Afficher la notice abrégée

hal.structure.identifierPleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorRAVEL, Guillaume
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
dc.contributor.authorBERGMANN, Michel
hal.structure.identifierMathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] [MaIAGE]
dc.contributor.authorTRUBUIL, Alain
hal.structure.identifierMICrobiologie de l'ALImentation au Service de la Santé [MICALIS]
dc.contributor.authorDESCHAMPS, Julien
hal.structure.identifierMICrobiologie de l'ALImentation au Service de la Santé [MICALIS]
dc.contributor.authorBRIANDET, Romain
hal.structure.identifierMathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] [MaIAGE]
hal.structure.identifierPleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
dc.contributor.authorLABARTHE, Simon
dc.date.issued2022-06-14
dc.description.abstractEnBiofilms are spatially organized communities of microorganisms embedded in a self-produced organic matrix, conferring to the population emerging properties such as an increased tolerance to the action of antimicrobials. It was shown that some bacilli were able to swim in the exogenous matrix of pathogenic biofilms and to counterbalance these properties. Swimming bacteria can deliver antimicrobial agents in situ, or potentiate the activity of antimicrobial by creating a transient vascularization network in the matrix. Hence, characterizing swimmer trajectories in the biofilm matrix is of particular interest to understand and optimize this new biocontrol strategy in particular, but also more generally to decipher ecological drivers of population spatial structure in natural biofilms ecosystems. In this study, a new methodology is developed to analyze time-lapse confocal laser scanning images to describe and compare the swimming trajectories of bacilli swimmers populations and their adaptations to the biofilm structure. The method is based on the inference of a kinetic model of swimmer populations including mechanistic interactions with the host biofilm. After validation on synthetic data, the methodology is implemented on images of three different species of motile bacillus species swimming in a Staphylococcus aureus biofilm. The fitted model allows to stratify the swimmer populations by their swimming behavior and provides insights into the mechanisms deployed by the micro-swimmers to adapt their swimming traits to the biofilm matrix.
dc.description.sponsorshipSensibilisation de biofilms industriels à l'action de désinfectants par l'infiltration de bactéries hyper-motiles
dc.language.isoen
dc.publishereLife Sciences Publication
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.encomputational biology
dc.subject.enSystems biology
dc.title.enInferring characteristics of bacterial swimming in biofilm matrix from time-lapse confocal laser scanning microscopy
dc.typeArticle de revue
dc.identifier.doi10.7554/eLife.76513
dc.subject.halSciences du Vivant [q-bio]
dc.subject.halMathématiques [math]
dc.identifier.arxiv2201.04371
bordeaux.journaleLife
bordeaux.volume11
bordeaux.peerReviewedoui
hal.identifierhal-03695580
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03695580v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=eLife&rft.date=2022-06-14&rft.volume=11&rft.au=RAVEL,%20Guillaume&BERGMANN,%20Michel&TRUBUIL,%20Alain&DESCHAMPS,%20Julien&BRIANDET,%20Romain&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée