Show simple item record

hal.structure.identifierInstitut des Sciences de la Terre d'Orléans - UMR7327 [ISTO]
dc.contributor.authorHATTAB, Nour
hal.structure.identifierLaboratoire Pluridisciplinaire de Recherche en Ingénierie des Systèmes, Mécanique et Energétique [2008-2013] [PRISME]
dc.contributor.authorHAMBLI, Ridha
hal.structure.identifierInstitut des Sciences de la Terre d'Orléans - UMR7327 [ISTO]
dc.contributor.authorMOTELICA-HEINO, Mikael
hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorMENCH, Michel
dc.date.issued2013
dc.identifier.issn0301-4797
dc.description.abstractEnThe statistical variation of soil properties and their stochastic combinations may affect the extent of soil contamination by metals. This paper describes a method for the stochastic analysis of the effects of the variation in some selected soil factors (pH, DOC and EC) on the concentration of copper in dwarf bean leaves (phytoavailability) grown in the laboratory on contaminated soils treated with different amendments. The method is based on a hybrid modeling technique that combines an artificial neural network (ANN) and Monte Carlo Simulations (MCS). Because the repeated analyses required by MCS are time-consuming, the ANN is employed to predict the copper concentration in dwarf bean leaves in response to stochastic (random) combinations of soil inputs. The input data for the ANN are a set of selected soil parameters generated randomly according to a Gaussian distribution to represent the parameter variabilities. The output is the copper concentration in bean leaves. The results obtained by the stochastic (hybrid) ANN-MCS method show that the proposed approach may be applied (i) to perform a sensitivity analysis of soil factors in order to quantify the most important soil parameters including soil properties and amendments on a given metal concentration, (ii) to contribute toward the development of decision-making processes at a large field scale such as the delineation of contaminated sites.
dc.description.sponsorshipGeofluids and Volatil elements – Earth, Atmosphere, Interfaces – Resources and Environment - ANR-10-LABX-0100
dc.language.isoen
dc.publisherElsevier
dc.title.enNeural network and Monte Carlo simulation approach to investigate variability of copper concentration in phytoremediated contaminated soils
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jenvman.2013.07.003
dc.subject.halPlanète et Univers [physics]/Interfaces continentales, environnement
dc.subject.halSciences de l'environnement/Milieux et Changements globaux
bordeaux.journalJournal of Environmental Management
bordeaux.page134-142
bordeaux.volume129
bordeaux.peerReviewedoui
hal.identifierinsu-00852439
hal.version1
hal.popularnon
hal.audienceInternationale
dc.subject.itSoil factors variability
dc.subject.itBean leaves
dc.subject.itCopper
dc.subject.itMonte Carlo simulation
dc.subject.itSoil contamination
dc.subject.itArtificial neural network
hal.origin.linkhttps://hal.archives-ouvertes.fr//insu-00852439v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Environmental%20Management&rft.date=2013&rft.volume=129&rft.spage=134-142&rft.epage=134-142&rft.eissn=0301-4797&rft.issn=0301-4797&rft.au=HATTAB,%20Nour&HAMBLI,%20Ridha&MOTELICA-HEINO,%20Mikael&MENCH,%20Michel&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record