Afficher la notice abrégée

hal.structure.identifierHawaii Natural Energy Institute
dc.contributor.authorDEANGELIS, Alexander D.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorROUGIER, Aline
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMANAUD, Jean-Pierre
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLABRUGÈRE, Christine
hal.structure.identifierU.S Department of Energy
dc.contributor.authorMILLER, Eric L.
hal.structure.identifierHawaii Natural Energy Institute
dc.contributor.authorGAILLARD, Nicolas
dc.date.issued2014
dc.identifier.issn0927-0248
dc.description.abstractEnFor optimal performance, the intermediate window layer in multijunction photovoltaics should transmit as much light as possible to guarantee maximum device efficiency. In this work, we demonstrate that indium molybdenum oxide (IMO) is a more suitable intermediate layer, compared to indium tin oxide (ITO), as it would absorb significantly less infrared light with comparable electrical conductivity once integrated into a multijunction solar cell. In fact, we show that IMO optoelectronic properties are virtually unchanged by the typical thermal budgets used in solar absorber deposition processes used in low-cost high-performance multijunction photovoltaics (e.g. CuInGaSe2). Specifically, IMO and ITO thin films were reactively sputtered onto glass substrates at 150 °C, then subjected to a vacuum annealing process (550 °C, 2 h) identical to that of co-evaporated copper gallium diselenide (CGSe), a candidate material for the top absorber in multijunction cells. We found that annealing substantially reduces the infrared transmittance of ITO starting at 900 nm, reducing by 2.5% per 100 nm, while IMO only started experiencing a reduction at 1400 nm and decaying more slowly at 1.6% per 100 nm. Furthermore, the resistivity of IMO was comparable to that of ITO after annealing. The resilience of IMO to such high temperature processes show that it has potential to enhance the performance of multijunction devices.
dc.language.isoen
dc.publisherElsevier
dc.subject.enIMO
dc.subject.enCIGS
dc.subject.enHigh temperature
dc.subject.enHigh mobility thin films
dc.subject.enMulti-junction cells
dc.subject.enTCO
dc.title.enTemperature-resistant high-infrared transmittance indium molybdenum oxide thin films as an intermediate window layer for multi-junction photovoltaics
dc.typeArticle de revue
dc.identifier.doi10.1016/j.solmat.2014.04.029
dc.subject.halChimie/Matériaux
bordeaux.journalSolar Energy Materials and Solar Cells
bordeaux.page174-178
bordeaux.volume127
bordeaux.peerReviewedoui
hal.identifierhal-01003798
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01003798v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Solar%20Energy%20Materials%20and%20Solar%20Cells&rft.date=2014&rft.volume=127&rft.spage=174-178&rft.epage=174-178&rft.eissn=0927-0248&rft.issn=0927-0248&rft.au=DEANGELIS,%20Alexander%20D.&ROUGIER,%20Aline&MANAUD,%20Jean-Pierre&LABRUG%C3%88RE,%20Christine&MILLER,%20Eric%20L.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée