Show simple item record

hal.structure.identifierDepartment of Materials Science & Engineering
dc.contributor.authorZOU, Yi
hal.structure.identifierDepartment of Materials Science & Engineering
dc.contributor.authorMOREEL, Loise
hal.structure.identifierDepartment of Materials Science & Engineering
dc.contributor.authorLIN, Hongtao
hal.structure.identifierDepartment of Materials Science & Engineering
dc.contributor.authorZHOU, Lie
hal.structure.identifierDepartment of Materials Science & Engineering
dc.contributor.authorLI, Lan
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDANTO, Sylvain
hal.structure.identifierIRradiance Glass, Inc.
dc.contributor.authorMUSGRAVES, David J.
hal.structure.identifierDepartment of Materials Science and Engineering [Gainesville] [UF|MSE]
dc.contributor.authorKOONTZ, Erick
hal.structure.identifierSchool of Materials Science and Engineering [COMSET]
dc.contributor.authorRICHARDSON, Kathleen
hal.structure.identifierInstitute of Energy Conversion
dc.contributor.authorDOBSON, Kevin D.
hal.structure.identifierDepartment of Materials Science & Engineering
hal.structure.identifierInstitute of Energy Conversion
dc.contributor.authorBIRKMIRE, Robert
hal.structure.identifierDepartment of Materials Science & Engineering
dc.contributor.authorHU, Juejun
dc.date.issued2014
dc.identifier.issn2195-1071
dc.description.abstractEnOrganic polymer materials are widely credited with extreme versatility for thin film device processing. However, they generally lack the high refractive indices of inorganic semiconductors essential for tight optical confinement in planar integrated photonic circuits. Inorganic–organic hybrid photonic systems overcome these limits by combining both types of materials, although such hybrid integration remains challenging given the vastly different properties of the two types of materials. In this paper, a new approach is used to realize inorganic–organic hybrid photonics using chalcogenide glass (ChG) materials. Known as an amorphous semiconductor, the glass possesses high refractive indices, and can be prepared in a thin film form through solution deposition and patterned via direct thermal nanoimprinting, processing methods traditionally exclusive to polymer materials only. Sub-micrometer waveguides, microring resonators, and diffraction gratings fabricated from solution processed (SP) ChG films can be monolithically integrated with organic polymer substrates to create mechanically flexible, high-index-contrast photonic devices. The resonators exhibit a high quality factor (Q-factor) of 80 000 near 1550 nm wavelength. Free-standing, flexible ChG gratings whose diffraction properties can be readily tailored by conformal integration on nonplanar surfaces are also demonstrated.
dc.language.isoen
dc.publisherWiley
dc.subject.enhybrid photonics
dc.subject.enchalcogenide glasses
dc.subject.ensolution deposition
dc.subject.enthermal nanoimprints
dc.subject.enpolymer substrates
dc.title.enSolution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices : inorganic-organic hybrid photonic integration
dc.typeArticle de revue
dc.identifier.doi10.1002/adom.201400068
dc.subject.halChimie/Matériaux
bordeaux.journalAdvanced Optical Materials
bordeaux.page759-764
bordeaux.volume2
bordeaux.issue8
bordeaux.peerReviewedoui
hal.identifierhal-01088095
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01088095v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advanced%20Optical%20Materials&rft.date=2014&rft.volume=2&rft.issue=8&rft.spage=759-764&rft.epage=759-764&rft.eissn=2195-1071&rft.issn=2195-1071&rft.au=ZOU,%20Yi&MOREEL,%20Loise&LIN,%20Hongtao&ZHOU,%20Lie&LI,%20Lan&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record