Show simple item record

hal.structure.identifierLaboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces [LEPMI ]
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSHARMA, Rakesh K.
hal.structure.identifierCatalonia Institute for Energy Research [IREC]
hal.structure.identifierLaboratoire des matériaux et du génie physique [LMGP ]
dc.contributor.authorBURRIEL, Mónica
hal.structure.identifierLaboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces [LEPMI ]
dc.contributor.authorDESSEMOND, Laurent
hal.structure.identifierLaboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces [LEPMI ]
dc.contributor.authorMARTIN, Vincent
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorBASSAT, Jean-Marc.
hal.structure.identifierLaboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces [LEPMI ]
dc.contributor.authorDJURADO, Elisabeth
dc.date.issued2016
dc.identifier.issn0378-7753
dc.description.abstractEnAn architectural design of the cathode microstructure based on combining electrostatic spray deposition (ESD) and screen-printing (SP) techniques has demonstrated to be an innovative strategy to enhance the electrochemical properties of La2NiO4+δ (LNO) as oxygen electrode on Ce0.9Gd0.1O2–δ (CGO) electrolyte for solid oxide fuel cells. For this purpose, the influence of the ESD process parameters on the microstructure has been systematically investigated. Electrochemical performances of four selected cathode microstructures are investigated: (i) 3-D coral nanocrystalline (average particle size ∼ 100 nm) LNO film grown by ESD; (ii) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) grown by ESD with a continuous nanometric dense interface; (iii) porous screen-printed LNO film (average particle size ∼ 400 nm); and (iv) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) with a continuous nanometric dense interface prepared by ESD topped by a LNO current collector prepared by SP. A significant reduction in the polarization resistance (Rpol) is obtained (0.08 Ω cm2 at 700 °C) for 3-D coral topped by the SP layer. Moreover LNO is found to be stable and compatible with CGO up to 800 °C for only 10 days duration in air, making it potentially suitable for SOFCs cathode application.
dc.language.isoen
dc.publisherElsevier
dc.title.enAn innovative architectural design to enhance the electrochemical performance of La2NiO4+δ cathodes for solid oxide fuel cell applications
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jpowsour.2016.03.067
dc.subject.halChimie/Matériaux
bordeaux.journalJournal of Power Sources
bordeaux.page17-28
bordeaux.volume316
bordeaux.peerReviewedoui
hal.identifierhal-01296342
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01296342v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Power%20Sources&rft.date=2016&rft.volume=316&rft.spage=17-28&rft.epage=17-28&rft.eissn=0378-7753&rft.issn=0378-7753&rft.au=SHARMA,%20Rakesh%20K.&BURRIEL,%20M%C3%B3nica&DESSEMOND,%20Laurent&MARTIN,%20Vincent&BASSAT,%20Jean-Marc.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record