Afficher la notice abrégée

hal.structure.identifierSystèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes [SPHYNX]
dc.contributor.authorNIKOLAYEV, Vadim S.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGARRABOS, Yves
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLECOUTRE-CHABOT, Carole
hal.structure.identifierService des Basses Températures [SBT ]
dc.contributor.authorPICHAVANT, Guillaume
hal.structure.identifierService des Basses Températures [SBT ]
dc.contributor.authorCHATAIN, Denis
hal.structure.identifierService des Basses Températures [SBT ]
dc.contributor.authorBEYSENS, Daniel
dc.date.issued2017
dc.description.abstractEnThermocapillary (Marangoni) motion of a gas bubble (or a liquid drop) under a temperature gradient can hardly be present in a one-component fluid. Indeed, in such a pure system, the vapor–liquid interface is always isothermal (at saturation temperature). However, evaporation on the hot side and condensation on the cold side can occur and displace the bubble. We have observed such a phenomenon in two different fluids submitted to a temperature gradient under reduced gravity: hydrogen under magnetic compensation of gravity in the HYLDE facility at CEA-Grenoble and water in the DECLIC facility onboard the ISS. The experiments and the subsequent analysis are performed in the vicinity of the vapor–liquid critical point to benefit from critical universality. In order to better understand the phenomena, a 1D numerical simulation has been performed. After the temperature gradient is imposed, two regimes can be evidenced. At early times, the temperatures in the bubble and the surrounding liquid become different thanks to their different compressibility and the " piston effect " mechanism, i.e. the fast adiabatic bulk thermalization induced by the expansion of the thermal boundary layers. The difference in local temperature gradients at the vapor–liquid interface results in an unbalanced evaporation/condensation phenomenon that makes the shape of the bubble vary and provoke its motion. At long times, a steady temperature gradient progressively forms in the liquid (but not in the bubble) and induces steady bubble motion towards the hot end. We evaluate the bubble velocity and compare with existing theories.
dc.language.isoen
dc.publisherElsevier
dc.subject.enPiston effect
dc.subject.enBubble motion
dc.subject.enThermal gradient
dc.subject.enCritical phenomena
dc.title.enEvaporation condensation-induced bubble motion after temperature gradient set-up
dc.typeArticle de revue
dc.identifier.doi10.1016/j.crme.2016.10.002
dc.subject.halPhysique [physics]
bordeaux.journalComptes Rendus Mécanique
bordeaux.page35-46
bordeaux.volume345
bordeaux.peerReviewedoui
hal.identifiercea-01485391
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//cea-01485391v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Comptes%20Rendus%20M%C3%A9canique&rft.date=2017&rft.volume=345&rft.spage=35-46&rft.epage=35-46&rft.au=NIKOLAYEV,%20Vadim%20S.&GARRABOS,%20Yves&LECOUTRE-CHABOT,%20Carole&PICHAVANT,%20Guillaume&CHATAIN,%20Denis&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée