Show simple item record

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGUILLEMET, Thomas
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorHEINTZ, Jean-Marc
hal.structure.identifierDGA/Mission pour la Recherche et l'Innovation Scientifique [DGA/MRIS]
dc.contributor.authorMORTAIGNE, Bruno
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLU, Yongfeng
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSILVAIN, Jean-François
dc.date.issued2018-01
dc.identifier.issn1438-1656
dc.description.abstractEnDiamond-dispersed copper matrix (Cu/D) composite materials with different interfacial configurations are fabricated through powder metallurgy and their thermal performances are evaluated. An innovative solution to chemically bond copper (Cu) to diamond (D) has been investigated and compared to the traditional Cu/D bonding process involving carbide-forming additives such as boron (B) or chromium (Cr). The proposed solution consists of coating diamond reinforcements with Cu particles through a gas–solid nucleation and growth process. The Cu particle-coating acts as a chemical bonding agent at the Cu–D interface during hot pressing, leading to cohesive and thermally conductive Cu/D composites with no carbide-forming additives. Investigation of the microstructure of the Cu/D materials through scanning electron microscopy, transmission electron microscopy, and atomic force microscopy analyses is coupled with thermal performance evaluations through thermal diffusivity, dilatometry, and thermal cycling. Cu/D composites fabricated with 40 vol% of Cu-coated diamonds exhibit a thermal conductivity of 475 W m−1 K−1 and a thermal expansion coefficient of 12 × 10−6 °C−1. These promising thermal performances are superior to that of B-carbide-bonded Cu/D composites and similar to that of Cr-carbide-bonded Cu/D composites fabricated in this study. Moreover, the Cu/D composites fabricated with Cu-coated diamonds exhibit higher thermal cycling resistance than carbide-bonded materials, which are affected by the brittleness of the carbide interphase upon repeated heating and cooling cycles. The as-developed materials can be applicable as heat spreaders for thermal management of power electronic packages. The copper-carbon chemical bonding solution proposed in this article may also be found interesting to other areas of electronic packaging, such as brazing solders, direct bonded copper substrates, and polymer coatings.
dc.language.isoen
dc.publisherWiley-VCH Verlag
dc.title.enFormation of Cu nanodots on diamond surface to improve heat transfer in Cu/D composites
dc.typeArticle de revue
dc.identifier.doi10.1002/adem.201700894
dc.subject.halChimie/Matériaux
bordeaux.journalAdvanced Engineering Materials
bordeaux.page1700894 (10 p.)
bordeaux.volume20
bordeaux.issue1
bordeaux.peerReviewedoui
hal.identifierhal-01695152
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01695152v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advanced%20Engineering%20Materials&rft.date=2018-01&rft.volume=20&rft.issue=1&rft.spage=1700894%20(10%20p.)&rft.epage=1700894%20(10%20p.)&rft.eissn=1438-1656&rft.issn=1438-1656&rft.au=GUILLEMET,%20Thomas&HEINTZ,%20Jean-Marc&MORTAIGNE,%20Bruno&LU,%20Yongfeng&SILVAIN,%20Jean-Fran%C3%A7ois&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record