Afficher la notice abrégée

hal.structure.identifierAdvanced Materials and Manufacturing Processes Institute
hal.structure.identifierDepartment of Materials Science and Engineering
dc.contributor.authorGWALANI, Bharat
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGORSSE, Stéphane
hal.structure.identifierDepartment of Materials Science and Engineering
hal.structure.identifierAdvanced Materials and Manufacturing Processes Institute
dc.contributor.authorCHOUDHURI, Deep
hal.structure.identifierDivision of Manufacturing Science and Technology [CSIRO]
dc.contributor.authorSTYLES, Mark
hal.structure.identifierDepartment of Materials Science and Engineering
dc.contributor.authorZHENG, Yufeng
hal.structure.identifierAdvanced Materials and Manufacturing Processes Institute
hal.structure.identifierDepartment of Materials Science and Engineering
dc.contributor.authorMISHRA, Rajiv
hal.structure.identifierAdvanced Materials and Manufacturing Processes Institute
hal.structure.identifierDepartment of Materials Science and Engineering
dc.contributor.authorBANERJEE, Rajarshi
dc.date.issued2018-07
dc.identifier.issn1359-6454
dc.description.abstractEnOften the experimentally-observed, single-phase high entropy alloy (HEA) is the result of second-phase precipitation constrained by thermodynamic and kinetic factors. Using Al0.3CoCrFeNi as a candidate HEA, this paper demonstrates the strong influence of thermo-mechanical processing on the transformation pathway adopted for isothermal second-phase precipitation. A traditional thermo-mechanical processing route comprised of homogenization cold-rolling solution treatment in the single fcc phase region, followed by a precipitation anneal at a lower temperature, results in a homogeneous distribution of nanometer scale-ordered L12 (gamma prime-like) precipitates within the fcc matrix. In contrast, if cold-rolling is followed directly by annealing at the precipitation temperature, then the resulting microstructural evolution pathway changes completely, with concurrent recrystallization of the matrix fcc grains and precipitation of B2 and sigma phases, largely at the grain boundaries. These experimentally observed variations in transformation pathway have been rationalized via the competition between the thermodynamic driving force and activation barrier for second-phase nucleation in this alloy, coupled with the kinetics of the process. The microstructural variations that result from these dramatically different phase transformation pathways can lead to some rather exceptional mechanical properties that can be varied over a large range even for a single Al0.3CoCrFeNi HEA composition.
dc.language.isoen
dc.publisherElsevier
dc.subject.enHigh entropy alloys
dc.subject.enPhase transformations
dc.subject.enCalphad
dc.subject.enAtom probe tomography
dc.subject.enSynchrotron
dc.subject.enXRD
dc.title.enModifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo-mechanical processing
dc.typeArticle de revue
dc.identifier.doi10.1016/j.actamat.2018.05.009
dc.subject.halChimie/Matériaux
bordeaux.journalActa Materialia
bordeaux.page169-185
bordeaux.volume153
bordeaux.peerReviewedoui
hal.identifierhal-01804285
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01804285v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Acta%20Materialia&rft.date=2018-07&rft.volume=153&rft.spage=169-185&rft.epage=169-185&rft.eissn=1359-6454&rft.issn=1359-6454&rft.au=GWALANI,%20Bharat&GORSSE,%20St%C3%A9phane&CHOUDHURI,%20Deep&STYLES,%20Mark&ZHENG,%20Yufeng&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée