Inertia-driven jetting regimes in microfluidic coflows
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | ZHANG, Fan | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | ERRIGUIBLE, Arnaud | |
hal.structure.identifier | IFP Energies nouvelles [IFPEN] | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | GAVOILLE, Théo | |
hal.structure.identifier | Department of Chemical Engineering | |
dc.contributor.author | TIMKO, Mike | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | MARRE, Samuel | |
dc.date.issued | 2018 | |
dc.identifier.issn | 2469-990X | |
dc.description.abstractEn | Microfluidics have been used extensively for the study of flows of immiscible fluids, with a specific focus on the effects of interfacial forces on flow behavior. In comparison, inertia-driven flow of confined coflowing fluids has received scant attention at the microscale, despite the fact that the effects of microscale confinement are expected to influence inertia-driven flow behavior as observed in free jets. Herein, we report three distinct modes for breakup of coflowing, confined, microscale jets: the conventional Rayleigh mode and two additional inertia-driven modes occurring at higher Reynolds number flows, namely, a sinuous wave breakup and an atomizationlike mode. Each of the three modes is differentiated by a characteristic droplet size, size distribution, and dependence of the jet length as a function of the external fluid velocity (vext). A unified phase diagram is proposed to categorize the jet breakup mechanisms and their transitions using, as a scale-up factor, the ratio of the jet inertial forces to the sum of the viscous and interfacial forces for both the inner and outer fluids. These results provide fundamental insights into the flow behavior of microscale-confined coflowing jets. | |
dc.description.sponsorship | Synthèse de nanocristaux organiques fluorescents en milieu fluide supercritique: une approche numérique et expérimentale complémentaire - ANR-17-CE07-0029 | |
dc.description.sponsorship | Micro-laboratoires géologiques sur puce pour l'étude des processus clés du transport réactif multiphasique appliqués au stockage géologique du CO2. - ANR-12-SEED-0001 | |
dc.language.iso | en | |
dc.publisher | American Physical Society | |
dc.title.en | Inertia-driven jetting regimes in microfluidic coflows | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1103/PhysRevFluids.3.092201 | |
dc.subject.hal | Chimie/Matériaux | |
bordeaux.journal | Physical Review Fluids | |
bordeaux.page | 092201(R) (9 p.) | |
bordeaux.volume | 9 | |
bordeaux.issue | 3 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01866650 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01866650v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical%20Review%20Fluids&rft.date=2018&rft.volume=9&rft.issue=3&rft.spage=092201(R)%20(9%20p.)&rft.epage=092201(R)%20(9%20p.)&rft.eissn=2469-990X&rft.issn=2469-990X&rft.au=ZHANG,%20Fan&ERRIGUIBLE,%20Arnaud&GAVOILLE,%20Th%C3%A9o&TIMKO,%20Mike&MARRE,%20Samuel&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |