Afficher la notice abrégée

hal.structure.identifierDepartment of Chemistry & Chemical Biology
dc.contributor.authorSMILEY, Danielle
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorCARLIER, Dany
hal.structure.identifierDepartment of Chemistry & Chemical Biology
dc.contributor.authorGOWARD, Gillian
dc.date.issued2019-11
dc.identifier.issn0926-2040
dc.description.abstractEnSodium ion batteries offer an inexpensive alternative to lithium ion batteries, particularly for large-scale applications such as grid storage that do not require fast charging rates and high power output. Moreover, the use of polyanionic structures as cathode materials afford incredibly high structural stability relative to layered transition metal oxides that can undergo a structural collapse upon full removal of the charge carrying ions. Sodium iron fluorophosphate, Na2FePO4F, has demonstrated its viability as a potential cathode material for sodium ion batteries, having a robust framework even after multiple charge-discharge cycles. Although solid-state NMR has traditionally been an excellent method for the determination of local structure and dynamic properties of cathode materials during the electrochemical cycling process, reliable assignment of the 23Na chemical shifts resulting from the paramagnetic hyperfine interaction can be difficult when using only empirical rules. Here we present the use of density functional theory calculations to assign the experimentally observed NMR shifts to the crystallographic sites in Na2FePO4F, where it is found that the results do not agree with the previously reported assignment based upon simple geometry arguments. Furthermore, we report the justification of the proposed desodiation mechanism in Na2FePO4F on the basis of theoretical arguments, in good agreement with experimental NMR results reported previously.
dc.language.isoen
dc.publisherElsevier
dc.title.enCombining density functional theory and 23Na NMR to characterize Na2FePO4F as a potential sodium ion battery cathode
dc.typeArticle de revue
dc.identifier.doi10.1016/j.ssnmr.2019.07.001
dc.subject.halChimie/Matériaux
bordeaux.journalSolid State Nuclear Magnetic Resonance
bordeaux.page1-8
bordeaux.volume103
bordeaux.peerReviewedoui
hal.identifierhal-02281359
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02281359v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Solid%20State%20Nuclear%20Magnetic%20Resonance&rft.date=2019-11&rft.volume=103&rft.spage=1-8&rft.epage=1-8&rft.eissn=0926-2040&rft.issn=0926-2040&rft.au=SMILEY,%20Danielle&CARLIER,%20Dany&GOWARD,%20Gillian&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée