The system will be going down for regular maintenance. Please save your work and logout.

Show simple item record

hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorBARCZAK, Sonia
hal.structure.identifierSUPA School of Physics and Astronomy [Glasgow]
dc.contributor.authorHALPIN, John
hal.structure.identifierInstitute of Petroleum Engineering
dc.contributor.authorBUCKMAN, Jim
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDECOURT, Rodolphe
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorPOLLET, Michaël
hal.structure.identifierISIS Facility
dc.contributor.authorSMITH, Ronald
hal.structure.identifierSUPA School of Physics and Astronomy [Glasgow]
dc.contributor.authorMACLAREN, Donald
hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorBOS, Jan-Willem
dc.date.issued2018-01-25
dc.identifier.issn1944-8244
dc.description.abstractEnHalf-Heusler alloys based on TiNiSn are promising thermoelectric materials characterized by large power factors and good mechanical and thermal stabilities, but they are limited by large thermal conductivities. A variety of strategies have been used to disrupt their thermal transport, including alloying with heavy, generally expensive, elements and nanostructuring, enabling figures of merit, ZT ≥ 1 at elevated temperatures (>773 K). Here, we demonstrate an alternative strategy that is based around the partial segregation of excess Cu leading to grain-by-grain compositional variations, the formation of extruded Cu “wetting layers” between grains, and—most importantly—the presence of statistically distributed interstitials that reduce the thermal conductivity effectively through point-defect scattering. Our best TiNiCuySn (y ≤ 0.1) compositions have a temperature-averaged ZTdevice = 0.3–0.4 and estimated leg power outputs of 6–7 W cm–2 in the 323–773 K temperature range. This is a significant development as these materials were prepared using a straightforward processing method, do not contain any toxic, expensive, or scarce elements, and are therefore promising candidates for large-scale production.
dc.language.isoen
dc.publisherWashington, D.C. : American Chemical Society
dc.subject.enhalf-Heusler
dc.subject.enphase segregation
dc.subject.enstructure−property relationships
dc.subject.enthermoelectrics
dc.subject.enTiNiSn
dc.title.enGrain-by-grain compositional variations and interstitial metals - a new route towards achieving high performance in Half-Heusler thermoelectrics
dc.typeArticle de revue
dc.identifier.doi10.1021/acsami.7b14525
dc.subject.halChimie/Matériaux
bordeaux.journalACS Applied Materials & Interfaces
bordeaux.page4786-4793
bordeaux.volume10
bordeaux.issue5
bordeaux.peerReviewedoui
hal.identifierhal-01717721
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01717721v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20Applied%20Materials%20&%20Interfaces&rft.date=2018-01-25&rft.volume=10&rft.issue=5&rft.spage=4786-4793&rft.epage=4786-4793&rft.eissn=1944-8244&rft.issn=1944-8244&rft.au=BARCZAK,%20Sonia&HALPIN,%20John&BUCKMAN,%20Jim&DECOURT,%20Rodolphe&POLLET,%20Micha%C3%ABl&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record