Show simple item record

hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorBARCZAK, Sonia
hal.structure.identifierSUPA School of Physics and Astronomy [Glasgow]
dc.contributor.authorHALPIN, John
hal.structure.identifierInstitute of Petroleum Engineering
dc.contributor.authorBUCKMAN, Jim
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDECOURT, Rodolphe
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorPOLLET, Michaël
hal.structure.identifierISIS Facility
dc.contributor.authorSMITH, Ronald
hal.structure.identifierSUPA School of Physics and Astronomy [Glasgow]
dc.contributor.authorMACLAREN, Donald
hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorBOS, Jan-Willem
dc.date.issued2018-01-25
dc.identifier.issn1944-8244
dc.description.abstractEnHalf-Heusler alloys based on TiNiSn are promising thermoelectric materials characterized by large power factors and good mechanical and thermal stabilities, but they are limited by large thermal conductivities. A variety of strategies have been used to disrupt their thermal transport, including alloying with heavy, generally expensive, elements and nanostructuring, enabling figures of merit, ZT ≥ 1 at elevated temperatures (>773 K). Here, we demonstrate an alternative strategy that is based around the partial segregation of excess Cu leading to grain-by-grain compositional variations, the formation of extruded Cu “wetting layers” between grains, and—most importantly—the presence of statistically distributed interstitials that reduce the thermal conductivity effectively through point-defect scattering. Our best TiNiCuySn (y ≤ 0.1) compositions have a temperature-averaged ZTdevice = 0.3–0.4 and estimated leg power outputs of 6–7 W cm–2 in the 323–773 K temperature range. This is a significant development as these materials were prepared using a straightforward processing method, do not contain any toxic, expensive, or scarce elements, and are therefore promising candidates for large-scale production.
dc.language.isoen
dc.publisherWashington, D.C. : American Chemical Society
dc.subject.enhalf-Heusler
dc.subject.enphase segregation
dc.subject.enstructure−property relationships
dc.subject.enthermoelectrics
dc.subject.enTiNiSn
dc.title.enGrain-by-grain compositional variations and interstitial metals - a new route towards achieving high performance in Half-Heusler thermoelectrics
dc.typeArticle de revue
dc.identifier.doi10.1021/acsami.7b14525
dc.subject.halChimie/Matériaux
bordeaux.journalACS Applied Materials & Interfaces
bordeaux.page4786-4793
bordeaux.volume10
bordeaux.issue5
bordeaux.peerReviewedoui
hal.identifierhal-01717721
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01717721v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20Applied%20Materials%20&%20Interfaces&rft.date=2018-01-25&rft.volume=10&rft.issue=5&rft.spage=4786-4793&rft.epage=4786-4793&rft.eissn=1944-8244&rft.issn=1944-8244&rft.au=BARCZAK,%20Sonia&HALPIN,%20John&BUCKMAN,%20Jim&DECOURT,%20Rodolphe&POLLET,%20Micha%C3%ABl&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record