Show simple item record

hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorBARCZAK, Barczak A.
hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorDOWNIE, Ruth A.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorPOPURI, Srinivasa Rao
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDECOURT, Rodolphe
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorPOLLET, Michaël
hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorBOS, Jan-Willem
dc.date.issued2015
dc.identifier.issn0022-4596
dc.description.abstractEnTwo series of Fe and Al double substituted MnSiγ chimney ladders with a nominal valence electron count, VEC=14 per transition metal were prepared (γ=1.75). Simultaneous replacement of Mn with Fe and Si with Al yielded the Mn1−xFexSi1.75−xAlx series while the second Mn1−xFexSi1.75–1.75xAl2x series follows the pseudo-binary between MnSi1.75 and FeAl2. Scanning electron microscopy and elemental mapping revealed that ~60% of the nominal Al content ends up in the product with the remainder lost to sublimation, and that up to 7% Al can be substituted in the main group sublattice. Profile analysis of X-ray powder diffraction data revealed gradual changes in the cell metrics, consistent with the simultaneous substitution of Fe and Al in a fixed ratio. All samples are p-type with VEC≈13.95 from the structural data and ~1×1021 holes cm−3 from variable temperature Seebeck measurements. The substituted samples have lower electrical resistivities (ρ300 K=2–5 mΩ cm) due to an improved microstructure. This leads to increased thermoelectric power factors (largest S2/ρ=1.95 mW m−1 K−2) compared to MnSiγ. The thermal conductivity for the Mn0.95Fe0.05Si1.66Al0.1 sample is 2.7 W m−1 K−1 between 300 and 800 K, and is comparable to literature data for the parent material.
dc.language.isoen
dc.publisherElsevier
dc.subject.enNowotny chimney ladder phase
dc.subject.enHigher manganese silicide
dc.subject.enThermoelectric energy conversion
dc.title.enThermoelectric properties of Fe and Al double substituted MnSiy (y ~ 1.73)
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jssc.2015.03.017
dc.subject.halChimie/Matériaux
dc.subject.halChimie/Chimie inorganique
bordeaux.journalJournal of Solid State Chemistry
bordeaux.page56-59
bordeaux.volume227
bordeaux.peerReviewedoui
hal.identifierhal-01145553
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01145553v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Solid%20State%20Chemistry&rft.date=2015&rft.volume=227&rft.spage=56-59&rft.epage=56-59&rft.eissn=0022-4596&rft.issn=0022-4596&rft.au=BARCZAK,%20Barczak%20A.&DOWNIE,%20Ruth%20A.&POPURI,%20Srinivasa%20Rao&DECOURT,%20Rodolphe&POLLET,%20Micha%C3%ABl&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record