Show simple item record

hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorPOUSSARD, Sylvie
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorDECOSSAS, Marion
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorLE BIHAN, Olivier
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMORNET, Stéphane
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorNAUDIN, Grégoire
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorLAMBERT, Olivier
dc.date.issued2015
dc.identifier.issn1176-9114
dc.description.abstractEnThe use of silica nanoparticles for their cellular uptake capability opens up new fields in biomedical research. Among the toxicological effects associated with their internalization, silica nanoparticles induce apoptosis that has been recently reported as a biochemical cue required for muscle regeneration. To assess whether silica nanoparticles could affect muscle regeneration, we used the C2C12 muscle cell line to study the uptake of fluorescently labeled NPs and their cellular trafficking over a long period. Using inhibitors of endocytosis, we determined that the NP uptake was an energy-dependent process mainly involving macropinocytosis and clathrin-mediated pathway. NPs were eventually clustered in lysosomal structures. Myoblasts containing NPs were capable of differentiation into myotubes, and after 7 days, electron microscopy revealed that the NPs remained primarily within lysosomes. The presence of NPs stimulated the formation of myotubes in a dose-dependent manner. NP internalization induced an increase of apoptotic myoblasts required for myoblast fusion. At noncytotoxic doses, the NP uptake by skeletal muscle cells did not prevent their differentiation into myotubes but, instead, enhanced the cell fusion.
dc.language.isoen
dc.publisherDove Medical Press
dc.subject.ensilica
dc.subject.ennanoparticle
dc.subject.enmuscle
dc.subject.encell encapsulation
dc.subject.entransmission electron microscopy
dc.subject.enapoptosis
dc.title.enInternalization and fate of silica nanoparticles in C2C12 skeletal muscle cells: evidence of a beneficial effect on myoblast fusion.
dc.typeArticle de revue
dc.identifier.doi10.2147/IJN.S74158
dc.subject.halChimie/Matériaux
bordeaux.journalInternational Journal of Nanomedicine
bordeaux.page1479-1492
bordeaux.volume10
bordeaux.peerReviewedoui
hal.identifierhal-01128811
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01128811v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Nanomedicine&rft.date=2015&rft.volume=10&rft.spage=1479-1492&rft.epage=1479-1492&rft.eissn=1176-9114&rft.issn=1176-9114&rft.au=POUSSARD,%20Sylvie&DECOSSAS,%20Marion&LE%20BIHAN,%20Olivier&MORNET,%20St%C3%A9phane&NAUDIN,%20Gr%C3%A9goire&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record