Afficher la notice abrégée

hal.structure.identifierCollege of Physics and Energy
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorCHENG, Jiaji
hal.structure.identifierDepartment of Electrical and Electronic Engineering
hal.structure.identifierThe Institute of Applied Physics and Materials Engineering
dc.contributor.authorLI, Yiwen
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorPLISSONNEAU, Marie
hal.structure.identifierSchool of Science and Engineering
dc.contributor.authorLI, Jiagen
hal.structure.identifierCollege of Physics and Energy
dc.contributor.authorLI, Junzi
hal.structure.identifierDepartment of Electrical and Electronic Engineering
dc.contributor.authorCHEN, Rui
hal.structure.identifierThe Institute of Applied Physics and Materials Engineering
dc.contributor.authorTANG, Zikang
hal.structure.identifierSolvay (France)
dc.contributor.authorPAUTROT-D’ALENÇON, Lauriane
hal.structure.identifierCollege of Physics and Energy
dc.contributor.authorHE, Tingchao
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorTRÉGUER-DELAPIERRE, Mona
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDELVILLE, Marie-Hélène
dc.date.issued2018-12
dc.identifier.issn2045-2322
dc.description.abstractEnCompared to the limited absorption cross-section of conventional photoactive TiO2 nanoparticles (NPs), plasmonic metallic nanoparticles can efficiently convert photons from an extended spectrum range into energetic carriers because of the localized surface plasmon resonance (LSPR). Using these metal oxide semiconductors as shells for plasmonic nanoparticles (PNPs) that absorb visible light could extend their applications. The photophysics of such systems is performed using transient absorption measurements and steady extinction simulations and shows that the plasmonic energy transfer from the AgNWs core to the TiO2 shell results from a hot carrier injection process. Lifetimes obtained from photobleaching decay dynamics suggest that (i) the presence of gold nanoparticles (AuNPs) in AgNWs@TiO2@AuNPs systems can further promote the hot carrier transfer process via plasmonic coupling effects and (ii) the carrier dynamics is greatly affected by the shell thickness of TiO2. This result points out a definite direction to design appropriate nanostructures with tunable charge transfer processes toward photo-induced energy conversion applications.
dc.language.isoen
dc.publisherNature Publishing Group
dc.title.enPlasmon-induced hot electron transfer in AgNW@TiO2@AuNPs nanostructures
dc.typeArticle de revue
dc.identifier.doi10.1038/s41598-018-32510-2
dc.subject.halChimie/Matériaux
bordeaux.journalScientific Reports
bordeaux.page14136 (11 p.)
bordeaux.volume8
bordeaux.peerReviewedoui
hal.identifierhal-01878581
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01878581v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Scientific%20Reports&rft.date=2018-12&rft.volume=8&rft.spage=14136%20(11%20p.)&rft.epage=14136%20(11%20p.)&rft.eissn=2045-2322&rft.issn=2045-2322&rft.au=CHENG,%20Jiaji&LI,%20Yiwen&PLISSONNEAU,%20Marie&LI,%20Jiagen&LI,%20Junzi&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée