Afficher la notice abrégée

hal.structure.identifierInstitute for Problems of Material Science
hal.structure.identifierInstitute of Physics ASCR
dc.contributor.authorLAGUTA, Valentin
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorELISSALDE, Catherine
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMAGLIONE, Mario
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierInstitute for Problems of Material Science
dc.contributor.authorARTEMENKO, Alla M.
hal.structure.identifierFaculty of Mathematics and Physics
dc.contributor.authorCHLAN, Vojtěch
hal.structure.identifierFaculty of Mathematics and Physics
dc.contributor.authorŠTĚPÁNKOVÁ, Helena
hal.structure.identifierInstitute for Problems of Material Science
dc.contributor.authorZAGORODNIY, Yury
dc.date.issued2015
dc.identifier.issn0141-1594
dc.description.abstractEnLattice structure transformations in nanopowders of ferroelectric BaTiO3 and BaTiO3@SiO2 core-shell nanostructured ceramics were studied by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) at the temperatures 120–450 K and particle size of 300 and 500 nm. NMR spectra of all studied samples in the paraelectric phase are identical to the spectra in bulk material indicating their perfect perovskite structure without visible influence of particle surface. However, we have found that surface of particles essentially influence the ferroelectric phase transitions detected by both NMR and EPR techniques. The strongest changes as compared to bulk material were observed in BaTiO3@SiO2 core-shell ceramics. Thorough analysis of NMR spectra suggests that the orthorhombic-like symmetry phase coexists here with other polar phases up to the Curie temperature. Depending on temperature, its relative volume varies from 25% to 100%. We assume that the orthorhombic-like symmetry phase is stabilized by anisotropic components of surface stresses which increase also global stability of polar state in nanoceramics to the temperature in bulk material. We summarize our results in a phase diagram.
dc.language.isoen
dc.publisherTaylor & Francis
dc.subject.enBarium titanate
dc.subject.enNanoparticles
dc.subject.enCeramics
dc.subject.enNuclear magnetic resonance
dc.subject.enFerroelectric phase transition
dc.title.enCrystal structure transformations induced by surface stresses in BaTiO3 and BaTiO3@SiO2 nanoparticles and ceramics
dc.typeArticle de revue
dc.identifier.doi10.1080/01411594.2014.996852
dc.subject.halChimie/Matériaux
bordeaux.journalPhase Transitions
bordeaux.page761-775
bordeaux.volume88
bordeaux.issue8
bordeaux.peerReviewedoui
hal.identifierhal-01734654
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01734654v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Phase%20Transitions&rft.date=2015&rft.volume=88&rft.issue=8&rft.spage=761-775&rft.epage=761-775&rft.eissn=0141-1594&rft.issn=0141-1594&rft.au=LAGUTA,%20Valentin&ELISSALDE,%20Catherine&MAGLIONE,%20Mario&ARTEMENKO,%20Alla%20M.&CHLAN,%20Vojt%C4%9Bch&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée