Afficher la notice abrégée

hal.structure.identifierLaboratoire de Géophysique Interne et Tectonophysique [LGIT]
dc.contributor.authorGRATIER, Jean Pierre
hal.structure.identifierLaboratoire de Géophysique Interne et Tectonophysique [LGIT]
dc.contributor.authorGUIGUET, Robert
hal.structure.identifierLaboratoire de Géodynamique des Chaines Alpines [LGCA]
hal.structure.identifierPhysics of Geological Processes [Oslo] [PGP]
dc.contributor.authorRENARD, Francois
hal.structure.identifierLaboratoire de Géophysique Interne et Tectonophysique [LGIT]
dc.contributor.authorJENATTON, Liliane
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorBERNARD, Dominique
dc.date.created2008
dc.date.issued2009
dc.identifier.issn2169-9313
dc.description.abstractEnIndenter experiments have been performed on quartz crystals in order to establish a pressure solution creep law relevant at upper- to mid-crustal conditions. This deformation mechanism contributes to Earth's crust geodynamics, controlling processes as different as fault permeability, strength, and stress evolution during inter-seismic periods or mechano-chemical differentiation during diagenesis and metamorphism. Indenter experiments have been performed at 350°C and 20-120 MPa during months with differential stress varying from 25 to 350 MPa. Several experimental parameters were varied: nature of quartz (synthetic or natural), nature of fluid, manner the solid/solution/solid interface was filled, orientation of the indented surfaces versus quartz crystallographic c-axis. Significant strain rates could only be obtained when using high solubility solutions (NaOH 1 mole/l). Displacement rates of the indenter were found activated by differential stress, with exponential dependence, as theoretically predicted. The mean thickness of the trapped fluid phase below the indenter was estimated in the range 2-10 nanometers. Moreover, the development of this trapped fluid phase was relatively fast, and allowed fluid penetration into previously dry contact regions by marginal dissolution. The indenter displacement rate was driven by differential stress and its kinetics was controlled by diffusion along the trapped fluid and the development of a morphological roughness along the interface. Conversely, marginal strain energy driven dissolution was observed around the indenter, and its kinetics was controlled by free-surface reaction. These experimental results are applied to model the interactions between pressure solution and brittle processes in fault zones, providing characteristic time scales for post-seismic transitory creep and sealing processes in quartz-rich rocks.
dc.language.isoen
dc.publisherAmerican Geophysical Union
dc.subjectpressure-solution
dc.subjectquartz
dc.subjectcreep
dc.subjectsealing
dc.subjectdeformation
dc.subjectcrust
dc.title.enA pressure solution creep law for quartz from indentation experiments
dc.typeArticle de revue
dc.identifier.doi10.1029/2008JB005652
dc.subject.halPlanète et Univers [physics]
bordeaux.journalJournal of Geophysical Research : Solid Earth
bordeaux.pageB03403
bordeaux.volume114
bordeaux.peerReviewedoui
hal.identifierinsu-00352937
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//insu-00352937v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Geophysical%20Research%20:%20Solid%20Earth&rft.date=2009&rft.volume=114&rft.spage=B03403&rft.epage=B03403&rft.eissn=2169-9313&rft.issn=2169-9313&rft.au=GRATIER,%20Jean%20Pierre&GUIGUET,%20Robert&RENARD,%20Francois&JENATTON,%20Liliane&BERNARD,%20Dominique&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée