Afficher la notice abrégée

hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLI, Dawei
hal.structure.identifierDepartment of Physics and Astronomy [Lincoln]
dc.contributor.authorXIAO, Zhiyong
hal.structure.identifierMaterials Science and Technology Division [Oak Ridge]
dc.contributor.authorMU, Sai
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorWANG, Fei
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLIU, Ying
hal.structure.identifierDepartment of Physics and Astronomy [Lincoln]
hal.structure.identifierNebraska Center for Materials and Nanoscience
dc.contributor.authorSONG, Jingfeng
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorHUANG, Xi
hal.structure.identifierSchool of Mechanical Engineering
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorJIANG, Lijia
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorXIAO, Jun
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLIU, Lei
hal.structure.identifierDepartment of Physics and Astronomy [Lincoln]
hal.structure.identifierNebraska Center for Materials and Nanoscience
dc.contributor.authorDUCHARME, Stephen
hal.structure.identifierNebraska Center for Materials and Nanoscience
hal.structure.identifierDepartment of Mechanical and Materials Engineering
dc.contributor.authorCUI, Bai
hal.structure.identifierDepartment of Physics and Astronomy [Lincoln]
hal.structure.identifierNebraska Center for Materials and Nanoscience
dc.contributor.authorHONG, Xia
hal.structure.identifierSchool of Mechanical Engineering
dc.contributor.authorJIANG, Lan
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSILVAIN, Jean-François
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLU, Yongfeng
dc.date.issued2018-02-12
dc.identifier.issn1530-6984
dc.description.abstractEnSingle-crystal transition metal dichalcogenides (TMDs) and TMD-based heterojunctions have recently attracted significant research and industrial interest owing to their intriguing optical and electrical properties. However, the lack of a simple, low-cost, environmentally friendly, synthetic method and a poor understanding of the growth mechanism post a huge challenge to implementing TMDs in practical applications. In this work, we developed a novel approach for direct formation of high-quality, monolayer and few-layer MoS2 single crystal domains via a single-step rapid thermal processing of a sandwiched reactor with sulfur and molybdenum (Mo) film in a confined reaction space. An all-solid-phase growth mechanism was proposed and experimentally/theoretically evidenced by analyzing the surface potential and morphology mapping. Compared with the conventional chemical vapor deposition approaches, our method involves no complicated gas-phase reactant transfer or reactions and requires very small amount of solid precursors [e.g., Mo (∼3 μg)], no carrier gas, no pretreatment of the precursor, no complex equipment design, thereby facilitating a simple, low-cost, and environmentally friendly growth. Moreover, we examined the symmetry, defects, and stacking phase in as-grown MoS2 samples using simultaneous second-harmonic-/sum-frequency-generation (SHG/SFG) imaging. For the first time, we observed that the SFG (peak intensity/position) polarization can be used as a sensitive probe to identify the orientation of TMDs’ crystallographic axes. Furthermore, we fabricated ferroelectric programmable Schottky junction devices via local domain patterning using the as-grown, single-crystal monolayer MoS2, revealing their great potential in logic and optoelectronic applications. Our strategy thus provides a simple, low-cost, and scalable path toward a wide variety of TMD single crystal growth and novel functional device design.
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.subject.enSum-frequency generation
dc.title.enA facile space-confined solid-phase sulfurization strategy for growth of high-quality ultrathin molybdenum disulfide single crystals
dc.typeArticle de revue
dc.identifier.doi10.1021/acs.nanolett.7b05473
dc.subject.halChimie/Matériaux
bordeaux.journalNano Letters
bordeaux.page2021-2032
bordeaux.volume18
bordeaux.issue3
bordeaux.peerReviewedoui
hal.identifierhal-01754404
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01754404v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nano%20Letters&rft.date=2018-02-12&rft.volume=18&rft.issue=3&rft.spage=2021-2032&rft.epage=2021-2032&rft.eissn=1530-6984&rft.issn=1530-6984&rft.au=LI,%20Dawei&XIAO,%20Zhiyong&MU,%20Sai&WANG,%20Fei&LIU,%20Ying&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée