Show simple item record

hal.structure.identifierInstitute of Physics
dc.contributor.authorPOLLERT, Emil
hal.structure.identifierInstitute of Physics
dc.contributor.authorVEVERKA, Pavel
hal.structure.identifierInstitute of Physics
dc.contributor.authorVEVERKA, Miroslav
hal.structure.identifierInstitute of Physics
hal.structure.identifierDepartment of Cell Biology
dc.contributor.authorKAMAN, Ondřej
hal.structure.identifierInstitute of Physics
dc.contributor.authorZÁVĚTA, Karel
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorVASSEUR, Sébastien
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorEPHERRE, Romain
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGOGLIO, Graziella
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDUGUET, Etienne
dc.date.issued2009
dc.identifier.issn0079-6786
dc.description.abstractEnToday the use of nanoparticles based on magnetite Fe3O4 or maghemite γ-Fe2O3 for magnetic fluid hyperthermia (MFH) application is preferred for evident reasons as biocompatibility and easy synthesis. However, they only show moderate heating capacities because their magnetic properties cannot be simply adjusted to a suitable level. A possible improvement of the MFH technique consists in using more complex magnetic oxides such as: (i) cobalt ferrite and derived phases whose magnetic properties depend on the composition and coercivity is essentially controlled by the magnetocrystalline and/or shape anisotropy, (ii) La1−xSrxMnO3 perovskites whose magnetic properties are influenced by the composition and crystallite size, and (iii) SrFe12O19/γ-Fe2O3 composites whose magnetic properties are mainly controlled by the ratio of the respective magnetic phases. Our main results concerning the synthesis of these compounds in the form of submicronic particles, their magnetic properties and their heating abilities are summarized, compared and discussed in this paper.
dc.language.isoen
dc.publisherElsevier
dc.subject.enMagnetic nanoparticles
dc.subject.enMagnetic fluid hyperthermia
dc.subject.enCobalt ferrite
dc.subject.enManganese perovskites
dc.subject.enSr-hexaferrite/maghemite composites
dc.title.enSearch a new core materials for magnetic fluid hyperthermia : preliminary chemical and physical issues
dc.typeArticle de revue
dc.identifier.doi10.1016/j.progsolidstchem.2009.02.001
dc.subject.halChimie/Matériaux
bordeaux.journalProgress in Solid State Chemistry
bordeaux.page1-14
bordeaux.volume37
bordeaux.issue1
bordeaux.peerReviewedoui
hal.identifierhal-01004423
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01004423v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Progress%20in%20Solid%20State%20Chemistry&rft.date=2009&rft.volume=37&rft.issue=1&rft.spage=1-14&rft.epage=1-14&rft.eissn=0079-6786&rft.issn=0079-6786&rft.au=POLLERT,%20Emil&VEVERKA,%20Pavel&VEVERKA,%20Miroslav&KAMAN,%20Ond%C5%99ej&Z%C3%81V%C4%9ATA,%20Karel&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record