Show simple item record

hal.structure.identifierÉquipe NanoBioSystèmes [LAAS-NBS]
dc.contributor.authorHOUMADI, Saïd
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDEDOVETS, Dimitri
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSI, Satyabrata
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorRUMI, Tamoto
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorODA, Reiko
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDELVILLE, Marie-Hélène
hal.structure.identifierÉquipe NanoBioSystèmes [LAAS-NBS]
dc.contributor.authorBERGAUD, Christian
dc.date.issued2013
dc.identifier.issn0003-6951
dc.description.abstractEnAmorphous SiO2 nanotubes (NTs) with outer and inner diameters of 35 ± 4 nm and 10 ± 4 nm, respectively, were synthesized through inorganic transcription using organic amphiphilic self-assemblies as templates. By performing three-point bending tests on suspended SiO2 NTs using an atomic force microscope, their elastic modulus was determined to be 73.3 ± 6.7 GPa which is comparable to that of bulk SiO2 as well as amorphous SiO2 nanowires obtained using chemical vapor deposition. These measurements were validated using finite element method calculations and show the crucial role played by the clamping conditions to determine the actual Young's modulus.
dc.language.isoen
dc.publisherAmerican Institute of Physics
dc.subject.enAtomic force microscopy
dc.subject.enBending
dc.subject.enChemical vapour deposition
dc.subject.enElasticity
dc.subject.enFinite element analysis
dc.subject.enMechanical testing
dc.subject.enNanofabrication
dc.subject.enNanotubes
dc.subject.enSelf-assembly
dc.subject.enSilicon compounds
dc.subject.enYoung's modulus
dc.title.enDetermination of the elastic properties of SiO2 nanotubes templated from organic amphiphilic self-assemblies through inorganic transcription
dc.typeArticle de revue
dc.identifier.doi10.1063/1.4801760
dc.subject.halChimie/Matériaux
bordeaux.journalApplied Physics Letters
bordeaux.page151904
bordeaux.volume102
bordeaux.issue15
bordeaux.peerReviewedoui
hal.identifierhal-00814558
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00814558v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied%20Physics%20Letters&rft.date=2013&rft.volume=102&rft.issue=15&rft.spage=151904&rft.epage=151904&rft.eissn=0003-6951&rft.issn=0003-6951&rft.au=HOUMADI,%20Sa%C3%AFd&DEDOVETS,%20Dimitri&SI,%20Satyabrata&RUMI,%20Tamoto&ODA,%20Reiko&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record