Show simple item record

hal.structure.identifierHigh Entropy Materials Center
hal.structure.identifierPhD. Program in Prospective Functional Materials Industry,
dc.contributor.authorLIU, Che-Jen
hal.structure.identifierMetals and Alloys
dc.contributor.authorGADELMEIER, Christian
hal.structure.identifierDepartment of Materials Science and Engineering
hal.structure.identifierAdvanced Application Centre for Microscopy & Microanalysis
dc.contributor.authorLU, Shao-Lun
hal.structure.identifierHigh Entropy Materials Center
hal.structure.identifierDepartment of Materials Science and Engineering
dc.contributor.authorYEH, Jien-Wei
hal.structure.identifierDepartment of Materials Science and Engineering
hal.structure.identifierAdvanced Application Centre for Microscopy & Microanalysis
dc.contributor.authorYEN, Hung-Wei
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGORSSE, Stéphane
hal.structure.identifierMetals and Alloys
dc.contributor.authorGLATZEL, Uwe
hal.structure.identifierHigh Entropy Materials Center
hal.structure.identifierDepartment of Materials Science and Engineering
hal.structure.identifierPhD. Program in Prospective Functional Materials Industry,
dc.contributor.authorYEH, An-Chou
dc.date.issued2022
dc.identifier.issn1359-6454
dc.description.abstractEnTensile creep, which is one of the most important deformation modes for high temperature applications, is rarely reported for refractory high entropy alloys (RHEAs). In the present study, the optical floating zone (OFZ) technique was used to fabricate HfNbTaTiZr with grain size larger than 1 mm on average; tensile creep tests under vacuum at 1100-1250℃ and stepwise loading of 5-30 MPa were conducted. The stress exponents and creep activation energies were determined to be 2.5-2.8 and 273 ± 15 kJ mol-1 , respectively. The stress exponents determined have suggested solute drag creep behavior, and deformation was governed by a/2<111> type dislocations. To elucidate the effect of alloying constituents on solute drag creep, intrinsic diffusion coefficients of all elements were determined by simulation, and theoretical minimum creep strain rates were compared with those of experimental values. Analysis suggests that creep rate of HfNbTaTiZr appears to be controlled by Ta, which possesses the lowest intrinsic diffusivity and contributes the most to drag dislocations. To our knowledge, this work is the first to report tensile creep deformation mechanism of HfNbTaTiZr, especially up to 1250℃.
dc.language.isoen
dc.publisherElsevier
dc.subject.enRefractory high entropy alloy
dc.subject.enCreep
dc.subject.enHigh-temperature deformation
dc.subject.enDiffusion
dc.subject.enThermally activated processes
dc.title.enTensile creep behavior of HfNbTaTiZr refractory high entropy alloy at elevated temperatures
dc.typeArticle de revue
dc.identifier.doi10.1016/j.actamat.2022.118188
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des matériaux [physics.class-ph]
bordeaux.journalActa Materialia
bordeaux.page118188
bordeaux.volume237
bordeaux.peerReviewedoui
hal.identifierhal-03777830
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03777830v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Acta%20Materialia&amp;rft.date=2022&amp;rft.volume=237&amp;rft.spage=118188&amp;rft.epage=118188&amp;rft.eissn=1359-6454&amp;rft.issn=1359-6454&amp;rft.au=LIU,%20Che-Jen&amp;GADELMEIER,%20Christian&amp;LU,%20Shao-Lun&amp;YEH,%20Jien-Wei&amp;YEN,%20Hung-Wei&amp;rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record