Afficher la notice abrégée

hal.structure.identifierDepartment of Physics and Astronomy [Charleston]
dc.contributor.authorOPRISAN, Ana
hal.structure.identifierDepartment of Physics [New Orleans]
dc.contributor.authorHEGSETH, John
hal.structure.identifierDepartment of Physics and Astronomy [Charleston]
dc.contributor.authorSMITH, Gregory M.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLECOUTRE-CHABOT, Carole
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGARRABOS, Yves
hal.structure.identifierPhysique et mécanique des milieux hétérogenes (UMR 7636) [PMMH]
hal.structure.identifierService des Basses Températures [SBT ]
dc.contributor.authorBEYSENS, Daniel
dc.date.issued2011
dc.identifier.issn1539-3755
dc.description.abstractEnNear the liquid-vapor critical point in pure fluids, material and thermal properties vary considerably with temperature. In a series of microgravity experiments, sulfur hexafluoride (SF<sub>6</sub>) was heated ∼1 K above its critical temperature, then quenched below the critical temperature in order to form gas and liquid domains. We found a power law exponent of 0.389 ± 0.010 for the growth of the wetting layer thickness during the intermediate stage of phase separation. Full and microscopic view images of the sample cell unit were analyzed to determine the changes in the size distribution of liquid droplets inside the gas phase over time. We found that the distribution of diameters for liquid droplets always contains a fraction of very small droplets, presumably due to a continuous nucleation process. At the same time, the size distribution flattens over time and rapidly includes large-size droplets, presumably generated through a coalescence mechanism. By following both a large gas bubble over two hours of video recordings, we found periodic and synchronous motion of the gas bubble along both the x and y directions. By following a large liquid droplet embedded into the large gas bubble, we found periodic, out of phase motions, which we related to Marangoni convection. The experimentally measured velocity of the liquid droplet is in good agreement with the theoretical predicted velocity of ∼0.386 μm/s obtained from Young's thermocapillary effect.
dc.language.isoen
dc.publisherAmerican Physical Society
dc.subject.enMicrogravity
dc.subject.enConvection
dc.subject.enDynamics
dc.subject.enLayers
dc.title.enDynamics of a wetting layer and Marangoni convection in microgravity
dc.typeArticle de revue
dc.identifier.doi10.1103/PhysRevE.84.021202
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
bordeaux.journalPhysical Review E : Statistical, Nonlinear, and Soft Matter Physics
bordeaux.page021202
bordeaux.volume84
bordeaux.issue2
bordeaux.peerReviewedoui
hal.identifierhal-00617186
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00617186v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Physical%20Review%20E%20:%20Statistical,%20Nonlinear,%20and%20Soft%20Matter%20Physics&amp;rft.date=2011&amp;rft.volume=84&amp;rft.issue=2&amp;rft.spage=021202&amp;rft.epage=021202&amp;rft.eissn=1539-3755&amp;rft.issn=1539-3755&amp;rft.au=OPRISAN,%20Ana&amp;HEGSETH,%20John&amp;SMITH,%20Gregory%20M.&amp;LECOUTRE-CHABOT,%20Carole&amp;GARRABOS,%20Yves&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée