Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
dc.contributor.authorVALDÉS-PARADA, Francisco
dc.date.accessioned2022-09-13T10:08:05Z
dc.date.available2022-09-13T10:08:05Z
dc.date.issued2022
dc.identifier.issn0022-1120en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/142315
dc.description.abstractEnThis work provides the derivation of a closed macroscopic model for immiscible two-phase, incompressible, Newtonian and isothermal creeping steady flow in a rigid and homogeneous porous medium without considering three-phase contact. The mass and momentum upscaled equations are obtained from the pore-scale Stokes equations, adopting a two-domain approach where the two fluid phases are separated by an interface. The average mass equations result from using the classical volume averaging method. A Green's formula and the adjoint Green's function velocity pair problems are used to obtain the pore-scale velocity solutions that are averaged to obtain the upscaled momentum balance equations. The macroscopic model is based on the assumptions of scale separation and the existence of a periodic representative elementary volume allowing a local description as usually postulated for upscaling. The macroscopic momentum equation in each phase includes the generalized Darcy-like dominant and viscous coupling terms and, importantly, an additional compensation term that accounts for surface tension effects to momentum transfer that is, otherwise, incompletely captured by the Darcy terms. This interfacial term, as well as the dominant and viscous coupling permeability tensors, can be predicted from the solutions of two associated closure problems that coincide with those reported in the literature. The relevance of the compensation term and the upscaled model validity are assessed by comparisons with direct numerical simulations in a model two-dimensional periodic structure. Upscaled model predictions are found to be in excellent agreement with direct numerical simulations.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enporous media
dc.subject.enmultiphase flow
dc.subject.enboundary integral methods
dc.title.enA macroscopic model for immiscible two-phase flow in porous media
dc.typeArticle de revueen_US
dc.identifier.doi10.1017/jfm.2022.487en_US
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]en_US
dc.subject.halPhysique [physics]/Physique mathématique [math-ph]en_US
bordeaux.journalJournal of Fluid Mechanicsen_US
bordeaux.pageA43en_US
bordeaux.volume944en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-03714489
hal.version1
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Fluid%20Mechanics&rft.date=2022&rft.volume=944&rft.spage=A43&rft.epage=A43&rft.eissn=0022-1120&rft.issn=0022-1120&rft.au=LASSEUX,%20Didier&VALD%C3%89S-PARADA,%20Francisco&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée