Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Recherche en Gestion des Organisations [IRGO]
dc.contributor.authorTZAGKARAKIS, Georgios
hal.structure.identifierInstitut de Recherche en Gestion des Organisations [IRGO]
dc.contributor.authorMAURER, Frantz
dc.contributor.authorDIONYSOPOULOS, Thomas
dc.date.accessioned2022-07-20T11:20:00Z
dc.date.available2022-07-20T11:20:00Z
dc.date.issued2021
dc.date.conference2021-01-18
dc.identifier.issn2219-5491en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/140536
dc.description.abstractEnQuantifying risk is pivotal for every financial institution, with the temporal dimension being the key aspect for all the well-established risk measures. However, exploiting the frequency information conveyed by financial data, could yield improved insights about the inherent risk evolution in a joint time-frequency fashion. Nevertheless, the great majority of risk managers make no explicit distinction between the information captured by patterns of different frequency content, while relying on the full time-resolution data, regardless of the trading horizon. To address this problem, a novel value-at-risk (VaR) quantification method is proposed, which combines nonlinearly the time-evolving energy profile of returns series at multiple frequency scales, determined by the predefined trading horizon. Most importantly, our proposed method can be coupled with any quantile-based risk measure to enhance its performance. Experimental evaluation with real data reveals an increased robustness of our method in efficiently controlling under-/overestimated VaR values.
dc.language.isoENen_US
dc.subject.enCommerce
dc.subject.enDifferent frequency
dc.subject.enExperimental evaluation
dc.subject.enFinancial institution
dc.subject.enFrequency information
dc.subject.enMultiple frequency
dc.subject.enMultiscale energy
dc.subject.enQuantification methods
dc.subject.enRisk assessment
dc.subject.enSignal processing
dc.subject.enTemporal dimensions
dc.subject.enValue engineering
dc.title.enNonparametric adaptive value-at-risk quantification based on the multiscale energy distribution of asset returns
dc.typeCommunication dans un congrès avec actesen_US
dc.identifier.doi10.23919/Eusipco47968.2020.9287568en_US
dc.subject.halSciences de l'Homme et Société/Gestion et managementen_US
bordeaux.page2393-2397en_US
bordeaux.volume2021-Januaryen_US
bordeaux.hal.laboratoriesIRGO (Institut de Recherche en Gestion des Organisations) - EA 4190en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.conference.titleNonparametric adaptive value-at-risk quantification based on the multiscale energy distribution of asset returnsen_US
bordeaux.countrynlen_US
bordeaux.title.proceeding28th European Signal Processing Conference (EUSIPCO)en_US
bordeaux.conference.cityAmsterdamen_US
bordeaux.peerReviewedouien_US
hal.identifierhal-03728672
hal.version1
hal.date.transferred2022-07-20T11:20:02Z
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2021&rft.volume=2021-January&rft.spage=2393-2397&rft.epage=2393-2397&rft.eissn=2219-5491&rft.issn=2219-5491&rft.au=TZAGKARAKIS,%20Georgios&MAURER,%20Frantz&DIONYSOPOULOS,%20Thomas&rft.genre=proceeding


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée