Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorVICTOR, Stéphane
ORCID: 0000-0002-0575-0383
IDREF: 148688942
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorRUIZ, Kendric
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorMELCHIOR, Pierre
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorCHAUMETTE, Serge
IDREF: 034300236
dc.date.accessioned2022-07-13T12:15:53Z
dc.date.available2022-07-13T12:15:53Z
dc.date.issued2022-04
dc.identifier.issn1311-0454en_US
dc.identifier.urioai:crossref.org:10.1007/s13540-022-00015-5
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/140474
dc.description.abstractEnUnmanned Aerial Vehicle applications have highly increased in the last years, from surveillance, exploration, rescue to transport applications. UAVs are more and more autonomous, therefore real-time trajectory planning is necessary and can be achieved thanks to artificial potential fields. The classic Ge & Cui repulsive force solely allows taking into account the velocity of the obstacles without any distinction. The Weyl potential force associates a degree of danger with an obstacle and has enabled to distinguish between the obstacles but the obstacle velocity is no more considered. Therefore, a new dynamical fractional repulsive force has been proposed by combining both advantages. The new dynamical fractional repulsive potential field is usable in a 3D environment and takes into account both the obstacle dynamics (position and speed) and their degree of dangerousness. Obstacle avoidance robustness is guaranteed, both from a safety point of view and from a trajectory optimization point of view. The proposed repulsive potential fields are first of all dynamical as they are based on the relative position and speed of the UAV in relation to the obstacle positions and speeds. Moreover, the dangerousness of the obstacles is also considered by introducing a fractional degree in their definition. Simulations results are provided to compare different repulsive potential field method (Ge & Cui, Weyl methods) to the proposed dynamical fractional potential field both in static and dynamical environments.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enMobile Robots
dc.subject.enPath planning
dc.subject.enReactive path planning
dc.subject.enPotential field
dc.subject.enDynamical Motion Planning
dc.subject.enUAV
dc.title.enDynamical repulsive fractional potential fields in 3D environment
dc.typeArticle de revueen_US
dc.identifier.doi10.1007/s13540-022-00015-5en_US
dc.subject.halSciences de l'ingénieur [physics]/Automatique / Robotiqueen_US
bordeaux.journalFractional Calculus and Applied Analysisen_US
bordeaux.page321-345en_US
bordeaux.volume25en_US
bordeaux.hal.laboratoriesLaboratoire d’Intégration du Matériau au Système (IMS) - UMR 5218en_US
bordeaux.issue2en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03722495
hal.version1
hal.date.transferred2022-07-13T12:15:55Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Fractional%20Calculus%20and%20Applied%20Analysis&rft.date=2022-04&rft.volume=25&rft.issue=2&rft.spage=321-345&rft.epage=321-345&rft.eissn=1311-0454&rft.issn=1311-0454&rft.au=VICTOR,%20St%C3%A9phane&RUIZ,%20Kendric&MELCHIOR,%20Pierre&CHAUMETTE,%20Serge&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record