Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorGASTINEAU, Anais
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAUJOL, Jean-Francois
IDREF: 081164432
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorBERTHOUMIEU, Yannick
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorGERMAIN, Christian
ORCID: 0000-0002-3097-8283
IDREF: 130936634
dc.date.accessioned2022-07-05T13:02:38Z
dc.date.available2022-07-05T13:02:38Z
dc.date.issued2022-01
dc.identifier.issn0196-2892en_US
dc.identifier.urioai:crossref.org:10.1109/tgrs.2021.3060958
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/140368
dc.description.abstractEnThe pansharpening problem amounts to fusing a high-resolution panchromatic image with a low-resolution multispectral image so as to obtain a high-resolution multispectral image. Therefore, the preservation of the spatial resolution of the panchromatic image and the spectral resolution of the multispectral image is of key importance for the pansharpening problem. To cope with it, we propose a new method based on a bidiscriminator in a generative adversarial network (GAN) framework. The first discriminator is optimized to preserve textures of images by taking as input the luminance and the near-infrared band of images, and the second discriminator preserves the color by comparing the chroma components Cb and Cr. Thus, this method allows to train two discriminators, each one with a different and complementary task. Moreover, to enhance these aspects, the proposed method based on bidiscriminator, and called MDSSC-GAN SAM, considers a spatial and a spectral constraint in the loss function of the generator. We show the advantages of this new method on experiments carried out on Pléiades and World View 3 satellite images.
dc.description.sponsorshipSuper-résolution d'images multi-échelles en sciences des matériaux avec des attributs géométriques - ANR-18-CE92-0050en_US
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enBidiscriminator
dc.subject.endeep learning
dc.subject.engenerative adversarial network (GAN)
dc.subject.enpansharpening
dc.subject.enremote sensing
dc.title.enGenerative Adversarial Network for Pansharpening With Spectral and Spatial Discriminators
dc.typeArticle de revueen_US
dc.identifier.doi10.1109/tgrs.2021.3060958en_US
dc.subject.halSciences de l'ingénieur [physics]/Electroniqueen_US
bordeaux.journalIEEE Transactions on Geoscience and Remote Sensingen_US
bordeaux.page1-11en_US
bordeaux.volume60en_US
bordeaux.hal.laboratoriesLaboratoire d’Intégration du Matériau au Système (IMS) - UMR 5218en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.exportfalse
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=IEEE%20Transactions%20on%20Geoscience%20and%20Remote%20Sensing&rft.date=2022-01&rft.volume=60&rft.spage=1-11&rft.epage=1-11&rft.eissn=0196-2892&rft.issn=0196-2892&rft.au=GASTINEAU,%20Anais&AUJOL,%20Jean-Francois&BERTHOUMIEU,%20Yannick&GERMAIN,%20Christian&rft.genre=article


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record