Show simple item record

hal.structure.identifierInterface Physique et Chimie pour le Vivant [IPCV]
dc.contributor.authorBARBERET, Ph.
hal.structure.identifierInterface Physique et Chimie pour le Vivant [IPCV]
dc.contributor.authorVIANNA, F.
hal.structure.identifierInterface Physique et Chimie pour le Vivant [IPCV]
dc.contributor.authorKARAMITROS, M.
hal.structure.identifierCentre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
dc.contributor.authorBRUN, T.
hal.structure.identifierInterface Physique et Chimie pour le Vivant [IPCV]
dc.contributor.authorGORDILLO, N.
hal.structure.identifierInterface Physique et Chimie pour le Vivant [IPCV]
dc.contributor.authorMORETTO, Ph.
hal.structure.identifierInterface Physique et Chimie pour le Vivant [IPCV]
dc.contributor.authorINCERTI, S.
hal.structure.identifierInterface Physique et Chimie pour le Vivant [IPCV]
dc.contributor.authorSEZNEC, H.
dc.date.issued2012
dc.identifier.issn0031-9155
dc.description.abstractEnThe energy and specific energy absorbed in the main cell compartments (nucleus and cytoplasm) in typical radiobiology experiments are usually estimated by calculations as they are not accessible for a direct measurement. In most of the work, the cell geometry is modelled using the combination of simple mathematical volumes. We propose a method based on high resolution confocal imaging and ion beam analysis (IBA) in order to import realistic cell nuclei geometries in Monte-Carlo simulations and thus take into account the variety of different geometries encountered in a typical cell population. Seventy-six cell nuclei have been imaged using confocal microscopy and their chemical composition has been measured using IBA. A cellular phantom was created from these data using the ImageJ image analysis software and imported in the Geant4 Monte-Carlo simulation toolkit. Total energy and specific energy distributions in the 76 cell nuclei have been calculated for two types of irradiation protocols: a 3 MeV alpha particle microbeam used for targeted irradiation and a 239Pu alpha source used for large angle random irradiation. Qualitative images of the energy deposited along the particle tracks have been produced and show good agreement with images of DNA double strand break signalling proteins obtained experimentally. The methodology presented in this paper provides microdosimetric quantities calculated from realistic cellular volumes. It is based on open-source oriented software that is publicly available.
dc.language.isoen
dc.publisherIOP Publishing
dc.title.enMonte-Carlo dosimetry on a realistic cell monolayer geometry exposed to alpha particles
dc.typeArticle de revue
dc.identifier.doi10.1088/0031-9155/57/8/2189
dc.subject.halPhysique [physics]/Physique [physics]/Physique Médicale [physics.med-ph]
bordeaux.journalPhysics in Medicine and Biology
bordeaux.page2189-2207
bordeaux.volume57
bordeaux.peerReviewedoui
hal.identifierin2p3-00695637
hal.version1
hal.popularnon
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//in2p3-00695637v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physics%20in%20Medicine%20and%20Biology&rft.date=2012&rft.volume=57&rft.spage=2189-2207&rft.epage=2189-2207&rft.eissn=0031-9155&rft.issn=0031-9155&rft.au=BARBERET,%20Ph.&VIANNA,%20F.&KARAMITROS,%20M.&BRUN,%20T.&GORDILLO,%20N.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record