Afficher la notice abrégée

dc.contributor.authorSAKATA, Dousatsu
dc.contributor.authorBELOV, Oleg
dc.contributor.authorBORDAGE, Marie-Claude
dc.contributor.authorEMFIETZOGLOU, Dimitris
dc.contributor.authorGUATELLI, Susanna
dc.contributor.authorINANIWA, Taku
dc.contributor.authorIVANCHENKO, Vladimir
dc.contributor.authorKARAMITROS, Mathieu
dc.contributor.authorKYRIAKOU, Ioanna
dc.contributor.authorLAMPE, Nathanael
dc.contributor.authorPETROVIC, Ivan
dc.contributor.authorRISTIC-FIRA, Aleksandra
hal.structure.identifierCentre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
dc.contributor.authorSHIN, Wook-Geun
hal.structure.identifierCentre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
dc.contributor.authorINCERTI, Sébastien
dc.date.issued2020-12
dc.identifier.issn2045-2322
dc.description.abstractEnIonising radiation induced DNA damage and subsequent biological responses to it depend on the radiation's track-structure and its energy loss distribution pattern. To investigate the underlying biological mechanisms involved in such complex system, there is need of predicting biological response by integrated Monte Carlo (MC) simulations across physics, chemistry and biology. Hence, in this work, we have developed an application using the open source Geant4-DNA toolkit to propose a realistic "fully integrated" MC simulation to calculate both early DNA damage and subsequent biological responses with time. We had previously developed an application allowing simulations of radiation induced early DNA damage on a naked cell nucleus model. In the new version presented in this work, we have developed three additional important features: (1) modeling of a realistic cell geometry, (2) inclusion of a biological repair model, (3) refinement of DNA damage parameters for direct damage and indirect damage scoring. The simulation results are validated with experimental data in terms of Single Strand Break (SSB) yields for plasmid and Double Strand Break (DSB) yields for plasmid/human cell. In addition, the yields of indirect DSBs are compatible with the experimental scavengeable damage fraction. The simulation application also demonstrates agreement with experimental data of [Formula: see text]-H2AX yields for gamma ray irradiation. Using this application, it is now possible to predict biological response along time through track-structure MC simulations
dc.language.isoen
dc.publisherNature Publishing Group
dc.title.enFully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA
dc.typeArticle de revue
dc.identifier.doi10.1038/s41598-020-75982-x
dc.subject.halPhysique [physics]/Physique [physics]/Physique Médicale [physics.med-ph]
bordeaux.journalScientific Reports
bordeaux.page20788
bordeaux.volume10
bordeaux.issue1
bordeaux.peerReviewedoui
hal.identifierhal-03032697
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03032697v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Scientific%20Reports&rft.date=2020-12&rft.volume=10&rft.issue=1&rft.spage=20788&rft.epage=20788&rft.eissn=2045-2322&rft.issn=2045-2322&rft.au=SAKATA,%20Dousatsu&BELOV,%20Oleg&BORDAGE,%20Marie-Claude&EMFIETZOGLOU,%20Dimitris&GUATELLI,%20Susanna&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée