Afficher la notice abrégée

hal.structure.identifierCentre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
hal.structure.identifierInterdisciplinary Institute for Neuroscience [Bordeaux] [IINS]
dc.contributor.authorDOMART, Florelle
hal.structure.identifierEuropean Synchrotron Radiation Facility [ESRF]
dc.contributor.authorCLOETENS, Peter
hal.structure.identifierCentre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
dc.contributor.authorROUDEAU, Stéphane
hal.structure.identifierCentre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
dc.contributor.authorCARMONA, Asuncion
hal.structure.identifierInterdisciplinary Institute for Neuroscience [Bordeaux] [IINS]
dc.contributor.authorVERDIER, Emeline
hal.structure.identifierInterdisciplinary Institute for Neuroscience [Bordeaux] [IINS]
hal.structure.identifierBordeaux Imaging Center [BIC]
dc.contributor.authorCHOQUET, Daniel
hal.structure.identifierCentre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
dc.contributor.authorORTEGA, Richard
dc.date.issued2020
dc.description.abstractEnZinc and copper are involved in neuronal differentiation and synaptic plasticity but the molecular mechanisms behind these processes are still elusive due in part to the difficulty of imaging trace metals together with proteins at the synaptic level. We correlate stimulated emission depletion (STED) microscopy of proteins and synchrotron X-ray fluorescence (SXRF) imaging of trace metals, both performed with 40 nm spatial resolution, on primary rat hippocampal neurons. We achieve a detection limit for zinc of 14 zeptogram (10 -21 g) per pixel. We reveal the co-localization at the nanoscale of zinc and tubulin in dendrites with a molecular ratio of about one zinc atom per tubulin-αβ dimer. We observe the co-segregation of copper and F-actin within the nano-architecture of dendritic protrusions. In addition, zinc chelation causes a decrease in the expression of cytoskeleton proteins in dendrites and spines. Overall, these results indicate new functions for zinc and copper in the modulation of the cytoskeleton morphology in dendrites, a mechanism associated to neuronal plasticity and memory formation.
dc.language.isoen
dc.publishereLife Sciences Publication
dc.subject.enzinc
dc.subject.encopper
dc.subject.endendrite
dc.subject.enspine
dc.subject.entubulin
dc.subject.enactin
dc.subject.enzinc
dc.subject.enSTED
dc.subject.ensynchrotron XRF
dc.title.enCorrelating STED and synchrotron XRF nano-imaging unveils the cosegregation of metals and cytoskeleton proteins in dendrites
dc.typeArticle de revue
dc.identifier.doi10.7554/eLife.62334
dc.subject.halChimie/Chimie analytique
bordeaux.journaleLife
bordeaux.pagee62334
bordeaux.volume9
bordeaux.peerReviewedoui
hal.identifierhal-03066339
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03066339v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=eLife&rft.date=2020&rft.volume=9&rft.spage=e62334&rft.epage=e62334&rft.au=DOMART,%20Florelle&CLOETENS,%20Peter&ROUDEAU,%20St%C3%A9phane&CARMONA,%20Asuncion&VERDIER,%20Emeline&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée