Regulated NiCu Cycles with the New <sup>57</sup>Cu(p,<i>γ</i>)<sup>58</sup>Zn Reaction Rate and the Influence on Type-I X-Ray Bursts: GS 1826–24 Clocked Burster
dc.contributor.author | LAM, Yi Hua | |
dc.contributor.author | LU, Ning | |
dc.contributor.author | HEGER, Alexander | |
dc.contributor.author | JACOBS, Adam Michael | |
hal.structure.identifier | Centre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG] | |
dc.contributor.author | SMIRNOVA, Nadezda A. | |
hal.structure.identifier | Centre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG] | |
dc.contributor.author | NIETO, Teresa Kurtukian | |
dc.contributor.author | JOHNSTON, Zac | |
dc.contributor.author | KUBONO, Shigeru | |
dc.date.issued | 2022 | |
dc.date.conference | 2021-09-21 | |
dc.description.abstractEn | <jats:p>In Type-I X-ray bursts (XRBs), the rapid-proton capture (rp-) process passes through the NiCu and ZnGa cycles before reaching the region above Ge and Se isotopes that hydrogen burning actively powers the XRBs. The sensitivity study performed by Cyburt <jats:italic>et al</jats:italic>. [1] shows that the <jats:sup>57</jats:sup>Cu(p,<jats:italic>γ</jats:italic>)<jats:sup>58</jats:sup>Zn reaction in the NiCu cycles is the fifth most important rp-reaction influencing the burst light curves. Langer <jats:italic>et al</jats:italic>. [2] precisely measured some low-lying energy levels of <jats:sup>58</jats:sup>Zn to deduce the <jats:sup>57</jats:sup>Cu(p,<jats:italic>γ</jats:italic>)<jats:sup>58</jats:sup>Zn reaction rate. Nevertheless, the order of the 1<jats:sup>+</jats:sup><jats:sub>1</jats:sub> and 2<jats:sup>+</jats:sup><jats:sub>3</jats:sub> resonance states that dominate at 0:2 ≲ <jats:italic>T</jats:italic>(GK) ≲ 0:8 is not confirmed. The 1<jats:sup>+</jats:sup><jats:sub>2</jats:sub> resonance state, which dominates at the XRB sensitive temperature regime 0:8 ≲ <jats:italic>T</jats:italic>(GK) ≲ 2 was not detected. Using isobaric-multipletmass equation (IMME), we estimate the order of the 1<jats:sup>+</jats:sup><jats:sub>1</jats:sub> and 2<jats:sup>+</jats:sup><jats:sub>3</jats:sub> resonance states and estimate the lower limit of the 1<jats:sup>+</jats:sup><jats:sub>2</jats:sub> resonance energy. We then determine the <jats:sup>57</jats:sup>Cu(p,<jats:italic>γ</jats:italic>)<jats:sup>58</jats:sup>Zn reaction rate using the full <jats:italic>pf</jats:italic> -model space shell model calculations. The new rate is up to a factor of four lower than the Forstner <jats:italic>et al</jats:italic>. [3] rate recommended by JINA REACLIBv2.2. Using the present <jats:sup>57</jats:sup>Cu(p,<jats:italic>γ</jats:italic>)<jats:sup>58</jats:sup>Zn, the latest <jats:sup>56</jats:sup>Ni(p,<jats:italic>γ</jats:italic>)<jats:sup>57</jats:sup>Cu and <jats:sup>55</jats:sup>Ni(p,<jats:italic>γ</jats:italic>)<jats:sup>56</jats:sup>Cu reaction rates, and 1D implicit hydrodynamic K<jats:sc>epler</jats:sc> code, we model the thermonuclear XRBs of the clocked burster GS 1826–24. We find that the new rates regulate the reaction flow in the NiCu cycles and strongly influence the burst-ash composition. The <jats:sup>59</jats:sup>Cu(p,<jats:italic>γ</jats:italic>)<jats:sup>56</jats:sup>Ni and <jats:sup>59</jats:sup>Cu(p,<jats:italic>α</jats:italic>)<jats:sup>60</jats:sup>Zn reactions suppress the influence of the <jats:sup>57</jats:sup>Cu(p,<jats:italic>γ</jats:italic>)<jats:sup>58</jats:sup>Zn reaction. They strongly diminish the impact of the nuclear reaction flow that bypasses the <jats:sup>56</jats:sup>Ni waiting point induced by the <jats:sup>55</jats:sup>Ni(p,<jats:italic>γ</jats:italic>)<jats:sup>56</jats:sup>Cu reaction on burst light curve.</jats:p> | |
dc.language.iso | en | |
dc.source.title | EPJ Web Conf. | |
dc.title.en | Regulated NiCu Cycles with the New <sup>57</sup>Cu(p,<i>γ</i>)<sup>58</sup>Zn Reaction Rate and the Influence on Type-I X-Ray Bursts: GS 1826–24 Clocked Burster | |
dc.type | Communication dans un congrès | |
dc.identifier.doi | 10.1051/epjconf/202226011023 | |
dc.subject.hal | Physique [physics]/Physique Nucléaire Expérimentale [nucl-ex] | |
bordeaux.page | 11023 | |
bordeaux.volume | 260 | |
bordeaux.country | CN | |
bordeaux.title.proceeding | EPJ Web Conf. | |
bordeaux.conference.city | Chengdu | |
bordeaux.peerReviewed | non | |
hal.identifier | hal-03604394 | |
hal.version | 1 | |
hal.invited | non | |
hal.proceedings | oui | |
hal.conference.end | 2021-09-25 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03604394v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=EPJ%20Web%20Conf.&rft.date=2022&rft.volume=260&rft.spage=11023&rft.epage=11023&rft.au=LAM,%20Yi%20Hua&LU,%20Ning&HEGER,%20Alexander&JACOBS,%20Adam%20Michael&SMIRNOVA,%20Nadezda%20A.&rft.genre=unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |