Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorROUX, Anthony
dc.contributor.authorLECOMPTE, Jennyfer
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorIORDANOFF, Ivan
dc.contributor.authorLAPORTE, Sébastien
dc.date.accessioned2022-03-30T15:10:36Z
dc.date.available2022-03-30T15:10:36Z
dc.date.issued2021-08
dc.identifier.issn1476-8259en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/136573
dc.description.abstractEnThe tearing of a muscle-tendon complex (MTC) is caused by an eccentric contraction; however, the structures involved and the mechanisms of rupture are not clearly identified. The passive mechanical behavior the MTC has already been modeled and validated with the discrete element method. The muscular activation is the next needed step. The aim of this study is to model the muscle fiber activation and the muscular activation of the MTC to validate their active mechanical behaviors. Each point of the force/length relationship of the MTC (using a parabolic law for the force/length relationship of muscle fibers) is obtained with two steps: 1) a passive tensile (or contractile) test until the desired elongation is reached and 2) fiber activation during a position holding that can be managed thanks to the Discrete Element model. The muscular activation is controlled by the activation of muscle fiber. The global force/length relationship of a single fiber and of the complete MTC during muscular activation is in agreement with literature. The influence of the external shape of the structure and the pennation angle are also investigated. Results show that the different constituents of the MTC (extracellular matrix, tendon), and the geometry, play an important role during the muscular activation and enable to decrease the maximal isometric force of the MTC. Moreover, the maximal isometric force decreases when the pennation angle increases. Further studies will combine muscular activation with a stretching of the MTC, until rupture, in order to numerically reproduce the tearing of the MTC.
dc.language.isoENen_US
dc.subject.enIsometric Contraction
dc.subject.enMuscle Contraction
dc.subject.enMuscle Fibers
dc.subject.enSkeletal
dc.subject.enMuscle
dc.subject.enSkeletal
dc.subject.enTendons
dc.title.enModeling of muscular activation of the muscle-tendon complex using discrete element method.
dc.title.alternativeComput Methods Biomech Biomed Enginen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1080/10255842.2020.1870039en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
dc.identifier.pubmed33416406en_US
bordeaux.journalComputer Methods in Biomechanics and Biomedical Engineeringen_US
bordeaux.page1184-1194en_US
bordeaux.volume24en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.issue11en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcepubmed
hal.identifierhal-03625222
hal.version1
hal.date.transferred2022-03-30T15:10:38Z
hal.exporttrue
workflow.import.sourcepubmed
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computer%20Methods%20in%20Biomechanics%20and%20Biomedical%20Engineering&rft.date=2021-08&rft.volume=24&rft.issue=11&rft.spage=1184-1194&rft.epage=1184-1194&rft.eissn=1476-8259&rft.issn=1476-8259&rft.au=ROUX,%20Anthony&LECOMPTE,%20Jennyfer&IORDANOFF,%20Ivan&LAPORTE,%20S%C3%A9bastien&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem