Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorZANI, Mathilde
dc.contributor.authorFANTERIA, Daniele
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCATAPANO, Anita
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorMONTEMURRO, Marco
IDREF: 171660978
dc.date.accessioned2022-01-05T09:02:36Z
dc.date.available2022-01-05T09:02:36Z
dc.date.issued2022-02-01
dc.identifier.issn0263-8223en_US
dc.identifier.urioai:crossref.org:10.1016/j.compstruct.2021.115042
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124317
dc.description.abstractEnA consistent energy-based cohesive zone model to simulate the mode I delamination behaviour of Fully-Uncoupled Multi-Directional (FUMD) laminates is presented in this study. The proposed energy-based approach allows determining a more general constitutive response of the cohesive interface to better match the experimental results. The constitutive behaviour of the interface is implemented in a standard finite elements (FE) code by means of a user-defined subroutine. To perform the simulations, FE models of a Double Cantilever Beam (DCB) specimen are developed with standard and multidirectional interfaces. The results of the simulations are compared to the experimental ones in terms of force–displacement curves and crack front shape to assess the effectiveness of the proposed model. The comparison shows that the numerical simulations can closely replicate the opening delamination behaviour of DCB specimens during propagation and, in particular, they capture quite well the shape of the delamination fronts with some differences: numerical delamination fronts are characterised by a curvature lower than the one of the experimental counterparts, especially towards the specimen edges. Simulations carried out for different initial delamination lengths confirmed that the delamination changes its front shape at the very beginning of the propagation, then the front remains unaltered. The length of the transition zone for the shape of the delamination front has been found to be much lower than the specimen width.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enCohesive zone model
dc.subject.enDamage
dc.subject.enDelamination
dc.subject.enFinite element method
dc.subject.enFracture toughness
dc.subject.enInterface
dc.title.enA consistent energy-based cohesive zone model to simulate delamination between differently oriented plies
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.compstruct.2021.115042en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalComposite Structuresen_US
bordeaux.page115042en_US
bordeaux.volume282en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03511753
hal.version1
hal.date.transferred2022-01-05T09:02:38Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Composite%20Structures&rft.date=2022-02-01&rft.volume=282&rft.spage=115042&rft.epage=115042&rft.eissn=0263-8223&rft.issn=0263-8223&rft.au=ZANI,%20Mathilde&FANTERIA,%20Daniele&CATAPANO,%20Anita&MONTEMURRO,%20Marco&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée