Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorBERTOLINO, Giulia
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorMONTEMURRO, Marco
IDREF: 171660978
dc.date.accessioned2021-12-21T10:10:10Z
dc.date.available2021-12-21T10:10:10Z
dc.date.issued2022-02-01
dc.identifier.issn0020-7403en_US
dc.identifier.urioai:crossref.org:10.1016/j.ijmecsci.2021.106961
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124279
dc.description.abstractEnThis work proposes a theoretical/numerical framework for the topology optimisation of anisotropic architected cellular materials at different scales. In particular, the topological variable (i.e., the pseudo-density field) is defined at both the scale of the representative volume element (i.e., the unit cell) of the material and at the macroscopic scale of the structure. The two-scale topology optimisation problem is formulated in the most general sense, i.e., by considering non-zero Neumann-Dirichlet boundary conditions. The proposed method is based on: (a) non-uniform rational basis spline hyper-surfaces to represent the topological variable at each scale, (b) the solid isotropic material with penalisation approach, (c) a general numerical homogenisation scheme based on the strain energy to establish the link between scales. The proposed formulation exploits the properties of non-uniform rational basis spline entities to determine the relationships occurring among the topological variables defined at different scales to correctly state the optimisation problem and to satisfy the hypotheses at the basis of the homogenisation method. In particular, scale separation (a necessary condition to be met in order to apply the homogenisation method) and manufacturing requirements are implicitly ensured by introducing minimum length scale constraints on the topological variables defined at both macroscopic scale and unit cell scale, respectively. Furthermore, the sensitivity of the optimised topology (at each scale) to the applied boundary conditions and to the elastic symmetry group of the representative volume element is investigated by founding new and original results. The effectiveness of the approach is tested on 2D and 3D benchmark problems taken from the literature.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enAnisotropy
dc.subject.enArchitected cellular materials
dc.subject.enHomogenisation
dc.subject.enMinimum length scale
dc.subject.enNURBS Hyper-surfaces
dc.subject.enTopology optimisation
dc.title.enTwo-scale topology optimisation of cellular materials under mixed boundary conditions
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.ijmecsci.2021.106961en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalInternational Journal of Mechanical Sciencesen_US
bordeaux.page106961en_US
bordeaux.volume216en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03498837
hal.version1
hal.date.transferred2021-12-21T10:10:13Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Mechanical%20Sciences&rft.date=2022-02-01&rft.volume=216&rft.spage=106961&rft.epage=106961&rft.eissn=0020-7403&rft.issn=0020-7403&rft.au=BERTOLINO,%20Giulia&MONTEMURRO,%20Marco&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée