Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLE MAOUT, Vincent
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorSCIUME, Giuseppe
IDREF: 170950476
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorBERTIN, Henri
IDREF: 069375607
dc.date.accessioned2021-12-21T09:42:33Z
dc.date.available2021-12-21T09:42:33Z
dc.date.issued2021-02-16
dc.identifier.issn0169-3913en_US
dc.identifier.urioai:crossref.org:10.1007/s11242-021-01561-x
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124262
dc.description.abstractEnPolymer solutions are often described as viscoelastic fluids, whose rheological behavior dynamically evolves according to the flow shear rate due to successive contractions and relaxations of inner deformable components. Contrary to shear-thickening and shear-thinning fluids, viscoelastic fluids can undergo an increase in the normal stress-differences even in simple geometries, leading to counterintuitive flow patterns. In this paper, we investigate numerically the monophasic flow of viscoelastic fluids through microfluidic devices. The objective is to qualitatively assess how modification of the rheological properties and the geometry of porous media representative element affect the flow regime at microscale. Deviations from equivalent Newtonian model are analyzed to quantify the contribution of elasticity in the flow. It is demonstrated that depending on the geometry, flow of polymer solution can display anisotropic features and flow resistance at relatively low viscoelastic numbers, which is coherent with previous microscopic experimental and numerical studies. Ensued applications of the formulated microscale model are discussed.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enViscoelastic fluids
dc.subject.enPorous media microstructure
dc.subject.enPore scale simulations
dc.title.enModeling Monophasic Flow of Polymer Solutions in Porous Media: Assessing Relative Impact of Intrinsic Fluid Properties and Pore Microstructure
dc.typeArticle de revueen_US
dc.identifier.doi10.1007/s11242-021-01561-xen_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalTransport in Porous Mediaen_US
bordeaux.page233-254en_US
bordeaux.volume137en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03498758
hal.version1
hal.date.transferred2021-12-21T09:42:35Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Transport%20in%20Porous%20Media&rft.date=2021-02-16&rft.volume=137&rft.issue=1&rft.spage=233-254&rft.epage=233-254&rft.eissn=0169-3913&rft.issn=0169-3913&rft.au=LE%20MAOUT,%20Vincent&SCIUME,%20Giuseppe&BERTIN,%20Henri&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée