Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorMONTEMURRO, Marco
IDREF: 171660978
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorBERTOLINO, Giulia
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorROINE, Thibaut
dc.date.accessioned2021-12-21T09:40:04Z
dc.date.available2021-12-21T09:40:04Z
dc.date.issued2020-12-01
dc.identifier.issn0263-8223en_US
dc.identifier.urioai:crossref.org:10.1016/j.compstruct.2020.113360
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124260
dc.description.abstractEnA general framework for the multi-scale topology optimisation (TO) of lattice structures (LSs) is presented in this work. The proposed method involves: Non-Uniform Rational Basis Spline (NURBS) hyper-surfaces to represent the pseudo-density field describing the LS representative volume element (RVE) topology, the Solid Isotropic Material with Penalisation (SIMP) approach and the strain energy-based homogenisation method (SEHM) to perform the scale transition. The main contributions of this work are essentially three. Firstly, physical responses are defined at different scales and their gradient is evaluated by exploiting the NURBS local support property and the Dirichlet’s problem properties at the RVE scale. Secondly, the computational efficiency of the SEHM based on elements strain energy over that of the SEHM based on elements averaged stresses is rigorously proven. Finally, to show the effectiveness of the method, numerical analyses are conducted on 2D and 3D problems. A sensitivity analysis of the optimised topology to the integer parameters of the NURBS hyper-surface is carried out. Moreover, the influence of the initial guess and of the macroscopic loading condition on the RVE optimised topology is investigated. The minimum length-scale requirement is also integrated into the problem formulation as a manufacturing constraint.
dc.description.sponsorshipConception et Optimisation de Forme pour la Fabrication Additive - ANR-17-CE10-0008en_US
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enTopology optimisation
dc.subject.enNURBS Hyper-Surfaces
dc.subject.enLattice Structures
dc.subject.enHomogenisation
dc.subject.enAdditive Manufacturing
dc.subject.enFinite Element Method
dc.title.enA General Multi-Scale Topology Optimisation Method for Lightweight Lattice Structures Obtained through Additive Manufacturing Technology
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.compstruct.2020.113360en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalComposite Structuresen_US
bordeaux.page113360en_US
bordeaux.volume258en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03312435
hal.version1
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Composite%20Structures&rft.date=2020-12-01&rft.volume=258&rft.spage=113360&rft.epage=113360&rft.eissn=0263-8223&rft.issn=0263-8223&rft.au=MONTEMURRO,%20Marco&BERTOLINO,%20Giulia&ROINE,%20Thibaut&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée