Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorYADAV, Pinku
dc.contributor.authorRIGO, Olivier
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorARVIEU, Corinne
IDREF: 162674333
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLE GUEN, Emilie
IDREF: 150344597
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLACOSTE, Eric
IDREF: 225791102
dc.date.accessioned2021-12-16T13:47:16Z
dc.date.available2021-12-16T13:47:16Z
dc.date.issued2021-02-16
dc.identifier.issn1438-1656en_US
dc.identifier.otherhttps://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadem.202001327&file=adem202001327-sup-0001-SuppData-S1.pdfen_US
dc.identifier.urioai:crossref.org:10.1002/adem.202001327
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124206
dc.description.abstractEnQuality assurance of the final build part in laser-powder bed fusion (L-PBF) is greatly influenced by the various process steps such as powder handling, powder bed spreading, and laser-material interaction. Each process step is interlinked to each other and can affect the overall behavior of the succeeding steps. Therefore, it is vital to monitor each step individually, post-process, and establish a link among the data to develop an approach to quantify the defects via inline monitoring. This study focuses on using pre- and post-exposure powder bed image data and in situ melt pool monitoring (MPM) data to monitor the build's overall quality. Two convolutional neural networks have been trained to treat the pre and post-exposure images with a trained accuracy of 93.16% and 96.20%, respectively. The supervised machine-learning algorithm called “support vector machine” is used to classify and post-process the photodiodes data obtained from the MPM. A case study on “benchmark part” is presented to check the proposed algorithms' overall working and detect abnormalities at three different process steps (pre and post-exposure, MPM) individually. This study shows the potential of machine learning approaches to improve the overall reliability of the (L-PBF) process by inter-linking the different process steps.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourcecrossref
dc.subject.endefect detection
dc.subject.enlaser powder bed fusion
dc.subject.enmachine learning
dc.subject.enmelt pool monitoring
dc.subject.enquality assurance
dc.title.enData Treatment of In Situ Monitoring Systems in Selective Laser Melting Machines
dc.typeArticle de revueen_US
dc.identifier.doi10.1002/adem.202001327en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
dc.description.sponsorshipEuropeH2020 Marie Skłodowska-Curie Actionsen_US
bordeaux.journalAdvanced Engineering Materialsen_US
bordeaux.page2001327en_US
bordeaux.volume23en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.issue5en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03483384
hal.version1
hal.date.transferred2021-12-16T13:47:52Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advanced%20Engineering%20Materials&rft.date=2021-02-16&rft.volume=23&rft.issue=5&rft.spage=2001327&rft.epage=2001327&rft.eissn=1438-1656&rft.issn=1438-1656&rft.au=YADAV,%20Pinku&RIGO,%20Olivier&ARVIEU,%20Corinne&LE%20GUEN,%20Emilie&LACOSTE,%20Eric&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée