Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCALTAGIRONE, Jean-Paul
dc.date.accessioned2021-12-14T16:46:29Z
dc.date.available2021-12-14T16:46:29Z
dc.date.issued2021-10-13
dc.identifier.issn0001-5970en_US
dc.identifier.urioai:crossref.org:10.1007/s00707-021-03070-w
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124176
dc.description.abstractEnDiscrete mechanics proposes an alternative formulation of the equations of mechanics where the Navier–Stokes and Navier–Lamé equations become approximations of the equation of discrete motion. It unifies the fields of fluid and solid mechanics by extending the fields of application of these equations to all space and time scales. This article presents the essential differences induced by the abandonment of the notion of continuous medium and global frame of reference. The results of the mechanics of continuous medium validated by fluid and solid observations are not questioned. The concept of continuous medium is not invalidated, and the discrete formulation proposed simply widens the spectrum of the applications of the classical equations. The discrete equation of motion introduces several important modifications, in particular the fundamental law of the dynamics on an element of volume becomes a law of conservation of the accelerations on an edge. The acceleration considered as an absolute quantity is written as a sum of two components, one solenoidal, the other irrotational, according to a local orthogonal Helmholtz–Hodge decomposition. The mass is abandoned and replaced by the compression and rotation energies represented by the scalar and vectorial potentials of the acceleration. The equation of motion and all the physical parameters are expressed only with two fundamental units, those of length and time. The essential differences between the two approaches are listed and some of them are discussed in depth. This is particularly the case with the known paradoxes of the Navier–Stokes equation or the importance of inertia for the Navier–Lamé equation.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourcecrossref
dc.subject.enDiscrete Mechanics
dc.subject.enConservation of Acceleration
dc.subject.enHelmholtz-Hodge Decomposition
dc.subject.enNavier-Stokes equations
dc.subject.enNavier-Lamé equations
dc.subject.enGalilean reference frame
dc.title.enAn alternative to the concept of continuous medium
dc.typeArticle de revueen_US
dc.identifier.doi10.1007/s00707-021-03070-wen_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalActa Mechanicaen_US
bordeaux.page4691-4703en_US
bordeaux.volume232en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.issue12en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03480636
hal.version1
hal.date.transferred2021-12-14T16:46:32Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Acta%20Mechanica&rft.date=2021-10-13&rft.volume=232&rft.issue=12&rft.spage=4691-4703&rft.epage=4691-4703&rft.eissn=0001-5970&rft.issn=0001-5970&rft.au=CALTAGIRONE,%20Jean-Paul&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée