Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorJAYET, Thomas-David
dc.contributor.authorBARANGER, Emmanuel
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorCOUEGNAT, Guillaume
dc.contributor.authorDENNEULIN, Sébastien
dc.date.accessioned2021-12-07T15:09:21Z
dc.date.available2021-12-07T15:09:21Z
dc.date.issued2021
dc.identifier.issn457949en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124036
dc.description.abstractEnAs the development of new grades of Ceramic Matrix Composites (CMC) for civil aviation grows, different manufacturing processes have been perfected and several of them can be used successively in order to obtain different types of micro-structures and a variable material quality. Consequently a versatile model should be developed in order to compare these materials and create a tool to help engineers to predict the mechanical behavior at the fiber scale. Here the Generalized Finite Element Method (GFEM) is proposed. It consists in enriching the classical Finite Element (FE) approached displacement by numerical functions to deliver an accurate description of the fiber-scale structure while limiting the number of degrees of freedom compared to a classical finite element description. A pattern-based description of the microscale is depicted using an industrial code for an engineering purpose. Four main difficulties are highlighted (i) the choice of the enrichment functions regarding the literature (ii) their stiffness matrix computation in a commercial code (iii) the construction of the pattern-based structure and (iv) the post-processing. Two GFEM strategies are presented and demonstrate the feasibility of an enriched kinematics within a classical finite element modeler. The selection of such modeler is conditioned by the possibility of weakly intrusive automation of the various stages of construction of the enriched patterns with the help of an external scripting language.
dc.language.isoENen_US
dc.subject.enGFEM
dc.subject.enHandbook problem
dc.subject.enImplementation
dc.subject.enComposites
dc.title.enFeasibility of a weakly intrusive Generalized Finite Element Method implementation in a commercial code: Application to Ceramic Matrix Composite micro-structures
dc.title.alternativeComputers & Structuresen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.compstruc.2020.106374en_US
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]en_US
bordeaux.journalComputers & Structuresen_US
bordeaux.page106374en_US
bordeaux.volume242en_US
bordeaux.hal.laboratoriesLaboratoire des Composites Thermo Structuraux (LCTS) - UMR 5801en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionCEAen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03010591
hal.version1
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computers%20&%20Structures&rft.date=2021&rft.volume=242&rft.spage=106374&rft.epage=106374&rft.eissn=457949&rft.issn=457949&rft.au=JAYET,%20Thomas-David&BARANGER,%20Emmanuel&COUEGNAT,%20Guillaume&DENNEULIN,%20S%C3%A9bastien&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée