Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorSCANDELLI, Hermes
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorAHMADI-SENICHAULT, Azita
dc.contributor.authorRICHARD, Franck
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLACHAUD, Jean
dc.date.accessioned2021-12-06T08:08:40Z
dc.date.available2021-12-06T08:08:40Z
dc.date.issued2021-11-10
dc.identifier.issn2076-3417en_US
dc.identifier.urioai:crossref.org:10.3390/app112210570
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/123982
dc.description.abstractEnThe numerical simulation of fire propagation requires capturing the coupling between wood pyrolysis, which leads to the production of various gaseous species, and the combustion of these species in the flame, which produces the energy that sustains the pyrolysis process. Experimental and numerical works of the fire community are targeted towards improving the description of the pyrolysis process to better predict the rate of production and the chemical nature of the pyrolysis gases. We know that wood pyrolysis leads to the production of a large variety of chemical species: water, methane, propane, carbon monoxide and dioxide, phenol, cresol, hydrogen, etc. With the idea of being able to capitalize on such developments to study more accurately the physics of fire propagation, we have developed a numerical framework that couples a detailed three-dimensional pyrolysis model and fireFoam. In this article, we illustrate the capability of the simulation tool by treating the combustion of a wood log. Wood is considered to be composed of three phases (cellulose, hemicellulose and lignin), each undergoing parallel degradation processes leading to the production of methane and hydrogen. We chose to simplify the gas mixture for this first proof of concept of the coupling of a multi-species pyrolysis process and a flame. In the flame, we consider two separate finite-rate combustion reactions for methane and hydrogen. The flame evolves during the simulation according to the concentration of the two gaseous species produced from the material. It appears that introducing different pyrolysis species impacts the temperature and behavior of the flame.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourcecrossref
dc.subject.ennumerical simulations
dc.subject.enwood
dc.subject.enpyrolysis
dc.subject.encombustion
dc.subject.enpuffing effect
dc.title.enSimulation of Wood Combustion in PATO Using a Detailed Pyrolysis Model Coupled to fireFoam
dc.title.alternativeAppl. Sci.en_US
dc.typeArticle de revueen_US
dc.identifier.doi10.3390/app112210570en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalApplied Sciencesen_US
bordeaux.page10570en_US
bordeaux.volume11en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.issue22en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03466603
hal.version1
hal.date.transferred2021-12-06T08:08:43Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied%20Sciences&rft.date=2021-11-10&rft.volume=11&rft.issue=22&rft.spage=10570&rft.epage=10570&rft.eissn=2076-3417&rft.issn=2076-3417&rft.au=SCANDELLI,%20Hermes&AHMADI-SENICHAULT,%20Azita&RICHARD,%20Franck&LACHAUD,%20Jean&rft.genre=article


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem