Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorYAO, Mengqin
dc.contributor.authorCHEN, Weiwei
dc.contributor.authorKONG, Junhua
dc.contributor.authorZHANG, Xinlian
dc.contributor.authorSHI, Nongnong
dc.contributor.authorZHONG, Silin
dc.contributor.authorMA, Ping
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorGALLUSCI, Philippe
dc.contributor.authorJACKSON, Stephen
dc.contributor.authorLIU, Yule
dc.contributor.authorHONG, Yiguo
dc.date.accessioned2020-09-11T13:01:48Z
dc.date.available2020-09-11T13:01:48Z
dc.date.issued2020-01-01
dc.identifier.issn1532-2548en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/11304
dc.description.abstractEnVivipary, wherein seeds germinate prior to dispersal while still associated with the maternal plant, is an adaptation to extreme environments. It is normally inhibited by the establishment of dormancy. The genetic framework of vivipary has been well studied; however, the role of epigenetics in vivipary remains unknown. Here, we report that silencing of () promoted precocious seed germination and seedling growth within the tomato () epimutant - () fruits. This was associated with decreases in abscisic acid concentration and levels of mRNA encoding 9-cis-epoxycarotenoid-dioxygenase (SlNCED), which is involved in abscisic acid biosynthesis. Differentially methylated regions were identified in promoters of differentially expressed genes, including knockdown also induced viviparous seedling growth in fruits. Strikingly, ripening reversion suppressed vivipary. Moreover, neither /-virus-induced gene silencing nor transgenic -RNA interference produced vivipary in wild-type tomatoes; the latter affected leaf architecture, arrested flowering, and repressed seed development. Thus, a dual pathway in ripening and -mediated epigenetics coordinates the blockage of seed vivipary.
dc.language.isoENen_US
dc.title.enMETHYLTRANSFERASE1 and Ripening Modulate Vivipary during Tomato Fruit Development
dc.title.alternativePlant Physiolen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1104/pp.20.00499en_US
dc.subject.halSciences du Vivant [q-bio]/Biologie végétaleen_US
dc.identifier.pubmed32503901en_US
bordeaux.journalPlant Physiologyen_US
bordeaux.page1883-1897en_US
bordeaux.volume183en_US
bordeaux.hal.laboratoriesEcophysiologie et Génomique Fonctionnelle de la Vigne (EGFV) - UMR 1287en_US
bordeaux.issue4en_US
bordeaux.institutionBordeaux Sciences Agroen_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcepubmed
hal.exportfalse
workflow.import.sourcepubmed
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Plant%20Physiology&rft.date=2020-01-01&rft.volume=183&rft.issue=4&rft.spage=1883-1897&rft.epage=1883-1897&rft.eissn=1532-2548&rft.issn=1532-2548&rft.au=YAO,%20Mengqin&CHEN,%20Weiwei&KONG,%20Junhua&ZHANG,%20Xinlian&SHI,%20Nongnong&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée