Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierNutrition et Neurobiologie intégrée [NutriNeuro]
dc.contributor.authorFOURRIER, Celia
hal.structure.identifierNutrition et Neurobiologie intégrée [NutriNeuro]
dc.contributor.authorREMUS-BOREL, Julie
hal.structure.identifierNutrition et Neurobiologie intégrée [NutriNeuro]
dc.contributor.authorGREENHALGH, Andrew D.
dc.contributor.authorGUICHARDANT, Michel
dc.contributor.authorBERNOUD-HUBAC, Nathalie
dc.contributor.authorLAGARDE, Michel
hal.structure.identifierNutrition et Neurobiologie intégrée [NutriNeuro]
dc.contributor.authorJOFFRE, Corinne
hal.structure.identifierNutrition et Neurobiologie intégrée [NutriNeuro]
dc.contributor.authorLAYE, Sophie
ORCID: 0000-0002-3843-1012
IDREF: 11366883X
dc.date.accessioned2021-09-08T08:02:25Z
dc.date.available2021-09-08T08:02:25Z
dc.date.issued2017-08-24
dc.identifier.issn1742-2094en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/112148
dc.description.abstractEnBACKGROUND: Neuroinflammatory processes are considered a double-edged sword, having both protective and detrimental effects in the brain. Microglia, the brain's resident innate immune cells, are a key component of neuroinflammatory response. There is a growing interest in developing drugs to target microglia and control neuroinflammatory processes. In this regard, docosahexaenoic acid (DHA), the brain's n-3 polyunsaturated fatty acid, is a promising molecule to regulate pro-inflammatory microglia and cytokine production. Several works reported that the bioavailability of DHA to the brain is higher when DHA is acylated to phospholipid. In this work, we analyzed the anti-inflammatory activity of DHA-phospholipid, either acetylated at the sn-1 position (AceDoPC, a stable form thought to have superior access to the brain) or acylated with palmitic acid at the sn-1 position (PC-DHA) using a lipopolysaccharide (LPS)-induced neuroinflammation model both in vitro and in vivo. METHODS: In vivo, adult C57Bl6/J mice were injected intravenously (i.v.) with either AceDoPC or PC-DHA 24 h prior to LPS (i.p.). For in vitro studies, immortalized murine microglia cells BV-2 were co-incubated with DHA forms and LPS. AceDoPC and PC-DHA effect on brain or BV-2 PUFA content was assessed by gas chromatography. LPS-induced pro-inflammatory cytokines interleukin IL-1β, IL-6, and tumor necrosis factor (TNF) α production were measured by quantitative PCR (qPCR) or multiplex. IL-6 receptors and associated signaling pathway STAT3 were assessed by FACS analysis and western-blot in vitro. RESULTS: In vivo, a single injection of AceDoPC or PC-DHA decreased LPS-induced IL-6 production in the hippocampus of mice. This effect could be linked to their direct effect on microglia, as revealed in vitro. In addition, AceDoPC or PC-DHA reduced IL-6 receptor while only AceDoPC decreased IL-6-induced STAT3 phosphorylation. CONCLUSIONS: These results highlight the potency of administered DHA-acetylated to phospholipids-to rapidly regulate LPS-induced neuroinflammatory processes through their effect on microglia. In particular, both IL-6 production and signaling are targeted by AceDoPC in microglia.
dc.description.sponsorshipMetabolism in human of a structured phospholipid from marine origin and neural effect - ANR-07-PNRA-0022en_US
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enAceDoPC
dc.subject.enAnimals
dc.subject.enCholine
dc.subject.enDHA
dc.subject.enDocosahexaenoic Acids
dc.subject.enIL-1β
dc.subject.enIL-6
dc.subject.enInflammation
dc.subject.enInflammation Mediators
dc.subject.enIntravenous
dc.subject.enLipopolysaccharides
dc.subject.enMice
dc.subject.enMicroglia
dc.subject.enPC-DHA
dc.subject.enPhosphatidylcholines
dc.subject.enPhospholipids
dc.subject.enSTAT3
dc.subject.enTNFα
dc.subject.enCell Line Transformed
dc.subject.enMice Inbred C57BL
dc.title.enDocosahexaenoic acid-containing choline phospholipid modulates LPS-induced neuroinflammation in vivo and in microglia in vitro
dc.typeArticle de revueen_US
dc.identifier.doi10.1186/s12974-017-0939-xen_US
dc.subject.halSciences du Vivant [q-bio]/Neurosciences [q-bio.NC]en_US
dc.identifier.pubmed28838312en_US
bordeaux.journalJournal of Neuroinflammationen_US
bordeaux.page170en_US
bordeaux.volume14en_US
bordeaux.hal.laboratoriesNutriNeurO (Laboratoire de Nutrition et Neurobiologie Intégrée) - UMR 1286en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINRAEen_US
bordeaux.teamPsychoneuroimmunologie et Nutrition: Approches expérimentales et cliniquesen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDInstitut National de la Recherche Agronomiqueen_US
bordeaux.identifier.funderIDAgence Nationale de la Rechercheen_US
bordeaux.identifier.funderIDConseil Régional Aquitaineen_US
bordeaux.identifier.funderIDAgreenSkillsen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Neuroinflammation&rft.date=2017-08-24&rft.volume=14&rft.issue=1&rft.spage=170&rft.epage=170&rft.eissn=1742-2094&rft.issn=1742-2094&rft.au=FOURRIER,%20Celia&REMUS-BOREL,%20Julie&GREENHALGH,%20Andrew%20D.&GUICHARDANT,%20Michel&BERNOUD-HUBAC,%20Nathalie&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée