Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorMAZERAT, Stéphane
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorLACROIX, Joséphine
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorRUFINO, Benoît
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorPAILLER, Rene
dc.date.accessioned2021-09-06T08:17:24Z
dc.date.available2021-09-06T08:17:24Z
dc.date.issued2019
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/112087
dc.description.abstractEnSiC-based fibers, eleven in total, derived from polycarbosilane pyrolysis and belonging to the three different generations, were fully converted into microporous carbon after selective etching of silicon atoms under pure chlorine flow at intermediate temperatures (550–850 °C). In this work, relationship between as-received fibers and their subsequent carbide-derived carbon (CDC) properties, pore structure oxidation resistance and mechanical properties, was investigated. The resulting carbon is microporous or micro-mesoporous with equivalent specific surface area exceeding 1000 m2 g−1 and pore size distribution (PSD) related to the substrate chemical composition and microstructure of former fibers. Oxidation kinetics were found to depend on this PSD. The former sp2 carbon free network of fibers remained unaffected by the chlorination. Its amount and percolation were respectively correlated to Young modulus and tensile strength of CDC. This carbon thus displays a nano-composite-like behavior with a former etched carbide matrix (transformed SiC and SiCO) and carbon free reinforcement. The results demonstrate CDC allows the control over pore size and mechanical properties by selecting an appropriate multiphasic substrate, combining etched and non-etched compounds.
dc.language.isoENen_US
dc.subject.enSilicon carbide
dc.subject.enCDC
dc.subject.enChlorination
dc.subject.enPore size
dc.title.enCarbon derived from silicon carbide fibers, a comparative study
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.mtcomm.2019.01.013en_US
dc.subject.halChimie/Matériauxen_US
bordeaux.journalMaterials Today Communicationsen_US
bordeaux.page177-185en_US
bordeaux.volume19en_US
bordeaux.hal.laboratoriesLaboratoire des Composites Thermo Structuraux (LCTS) - UMR 5801en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionCEAen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03335289
hal.version1
hal.date.transferred2021-09-06T08:17:27Z
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Materials%20Today%20Communications&rft.date=2019&rft.volume=19&rft.spage=177-185&rft.epage=177-185&rft.au=MAZERAT,%20St%C3%A9phane&LACROIX,%20Jos%C3%A9phine&RUFINO,%20Beno%C3%AEt&PAILLER,%20Rene&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée