Afficher la notice abrégée

dc.contributor.authorDE BAUBIGNY, Julien Dupre
dc.contributor.authorBENZAQUEN, Michael
dc.contributor.authorFABIE, Laure
dc.contributor.authorDELMAS, Mathieu
dc.contributor.authorAIME, Jean-Pierre
dc.contributor.authorLEGROS, Marc
dc.contributor.authorONDARCUHU, Thierry
dc.date.accessioned2020-09-03T08:02:14Z
dc.date.available2020-09-03T08:02:14Z
dc.date.issued2015
dc.identifier.issn0743-7463
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/10994
dc.description.abstractEnWe investigate the shape and mechanical properties of liquid interfaces down to nanometer scale by atomic force microscopy (AFM) and scanning electron microscopy (SEM) combined with in situ micromanipulation techniques. In both cases, the interface is probed with a cylindrical nanofiber with radius R of the order of 25-100 nm. The effective spring constant of the nanomeniscus oscillated around its equilibrium position is determined by static and frequency-modulation (FM) AFM modes. In the case of an unbounded meniscus, we find that the effective spring constant k is proportional to the surface tension gamma of the liquid through k = (0.51 +/- 0.06)gamma, regardless of the excitation frequency from quasi-static up to 450 kHz. A model based on the equilibrium shape of the meniscus reproduces well the experimental data. Electron microscopy allowed to visualize the meniscus profile around the fiber with a lateral resolution of the order of 10 nm and confirmed its catenary shape. The influence of a lateral confinement of the interface is also investigated. We showed that the lateral extension L of the meniscus influences the effective spring constant following a logarithmic evolution k similar to 2 pi gamma/ln(L/R) deduced from the model. This comprehensive study of liquid interface properties over more than 4 orders of magnitude in meniscus size shows that advanced FM-AFM and SEM techniques are promising tools for the investigation of mechanical properties of liquids down to nanometer scale.
dc.language.isoen
dc.title.enShape and Effective Spring Constant of Liquid Interfaces Probed at the Nanometer Scale: Finite Size Effects
dc.typeArticle de revue
dc.subject.halChimie/Matériaux
bordeaux.journalLangmuir
bordeaux.page9790-9798
bordeaux.volume31
bordeaux.hal.laboratoriesInstitut de Chimie & de Biologie des Membranes & des Nano-objets (CBMN) - UMR 5248*
bordeaux.hal.laboratoriesInstitut de Chimie & de Biologie des Membranes & des Nano-objets (CBMN, UMR 5248)
bordeaux.issue36
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Langmuir&rft.date=2015&rft.volume=31&rft.issue=36&rft.spage=9790-9798&rft.epage=9790-9798&rft.eissn=0743-7463&rft.issn=0743-7463&rft.au=DE%20BAUBIGNY,%20Julien%20Dupre&BENZAQUEN,%20Michael&FABIE,%20Laure&DELMAS,%20Mathieu&AIME,%20Jean-Pierre&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée