Afficher la notice abrégée

hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorMARTINEZ, Denis
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorDECOSSAS, Marion
dc.contributor.authorKOWAL, Julia
dc.contributor.authorFREY, Lukas
dc.contributor.authorSTAHLBERG, Henning
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorDUFOURC, Erick J.
dc.contributor.authorRIEK, Roland
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorHABENSTEIN, Birgit
dc.contributor.authorBIBOW, Stefan
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorLOQUET, Antoine
dc.date.accessioned2020-07-09T14:16:44Z
dc.date.available2020-07-09T14:16:44Z
dc.date.issued2017-06
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/10291
dc.description.abstractEnNanodiscs offer a very promising tool to incorporate membrane proteins into native-like lipid bilayers and an alternative to liposomes to maintain protein functions and protein-lipid interactions in a soluble nanoscale object. The activity of the incorporated membrane protein appears to be correlated to its dynamics in the lipid bilayer and by protein-lipid interactions. These two parameters depend on the lipid internal dynamics surrounded by the lipid-encircling discoidal scaffold protein that might differ from more unrestricted lipid bilayers observed in vesicles or cellular extracts. A solid-state NMR spectroscopy investigation of lipid internal dynamics and thermotropism in nanodiscs is reported. The gel-to-fluid phase transition is almost abolished for nanodiscs, which maintain lipid fluid properties for a large temperature range. The addition of cholesterol allows fine-tuning of the internal bilayer dynamics by increasing chain ordering. Increased site-specific order parameters along the acyl chain reflect a higher internal ordering in nanodiscs compared with liposomes at room temperature; this is induced by the scaffold protein, which restricts lipid diffusion in the nanodisc area.
dc.title.enLipid Internal Dynamics Probed in Nanodiscs
dc.typeArticle de revue
dc.identifier.doi10.1002/cphc.201700450
dc.subject.halChimie/Matériaux
bordeaux.journalChemphyschem : a European journal of chemical physics and physical chemistry
bordeaux.page2651-2657
bordeaux.volume18
bordeaux.hal.laboratoriesInstitut de Chimie & de Biologie des Membranes & des Nano-objets (CBMN) - UMR 5248*
bordeaux.hal.laboratoriesInstitut de Chimie & de Biologie des Membranes & des Nano-objets (CBMN, UMR 5248)
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Chemphyschem%20:%20a%20European%20journal%20of%20chemical%20physics%20and%20physical%20chemistry&rft.date=2017-06&rft.volume=18&rft.issue=2&rft.spage=2651-2657&rft.epage=2651-2657&rft.au=MARTINEZ,%20Denis&DECOSSAS,%20Marion&KOWAL,%20Julia&FREY,%20Lukas&STAHLBERG,%20Henning&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée