Afficher la notice abrégée

hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorMENDOZA, Oscar
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorCALMET, P.
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorALVES, Isabel
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorLECOMTE, Sophie
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorRAOUX, Matthieu
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorCULLIN, Christophe
ORCID: 0000-0003-4110-4677
IDREF: 85920959
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorELEZGARAY, Juan
dc.date.accessioned2020-07-09T14:16:42Z
dc.date.available2020-07-09T14:16:42Z
dc.date.issued2017-07-13
dc.identifier.issn2040-3364
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/10285
dc.description.abstractEnControl of transport across membranes, whether natural or synthetic, is fundamental in many biotechnology applications, including sensing and drug release. Mutations of naturally existing protein channels, such as hemolysin, have been explored in the past. More recently, DNA channels with conductivities in the nanosiemens range have been designed. Regulating transport across DNA channels in response to external stimuli remains an important challenge. Previous designs relied on steric hindrance to control the inner diameter of the channel, which resulted in unstable electric signatures. In this paper we introduce a new design to control electric channel conductance of a DNA nanopore. The tensegrity driven mechanism inhibits the flux of small analytes while keeping a tightly controlled ionic transport modulated by the addition of specific DNA sequences. Current signals are clearly defined, with no sign of gating, opening new perspectives in single molecule DNA sensing.
dc.title.enA tensegrity driven DNA nanopore
dc.title.alternativeNanoscale
dc.typeArticle de revue
dc.identifier.doi10.1039/c7nr01901g
dc.subject.halChimie/Matériaux
bordeaux.journalNanoscale
bordeaux.page9762-9769
bordeaux.volume9
bordeaux.hal.laboratoriesInstitut de Chimie & de Biologie des Membranes & des Nano-objets (CBMN) - UMR 5248*
bordeaux.hal.laboratoriesInstitut de Chimie & de Biologie des Membranes & des Nano-objets (CBMN, UMR 5248)
bordeaux.issue27
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nanoscale&rft.date=2017-07-13&rft.volume=9&rft.issue=27&rft.spage=9762-9769&rft.epage=9762-9769&rft.eissn=2040-3364&rft.issn=2040-3364&rft.au=MENDOZA,%20Oscar&CALMET,%20P.&ALVES,%20Isabel&LECOMTE,%20Sophie&RAOUX,%20Matthieu&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée