Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorLETINIER, Louis
dc.contributor.authorJOUGANOUS, Julien
dc.contributor.authorBENKEBIL, Mehdi
dc.contributor.authorBEL-LETOILE, Alicia
dc.contributor.authorGOEHRS, Clement
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorSINGIER, Allison
dc.contributor.authorROUBY, Franck
dc.contributor.authorLACROIX, Clemence
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorMIREMONT-SALAME, Ghada
dc.contributor.authorMICALLEF, Joelle
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorSALVO, Francesco
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorPARIENTE, Antoine
IDREF: 13395711X
dc.date.accessioned2021-06-29T10:15:19Z
dc.date.available2021-06-29T10:15:19Z
dc.date.issued2021-04-18
dc.identifier.issn1532-6535 (Electronic) 0009-9236 (Linking)en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/79325
dc.description.abstractEnAdverse drug reaction (ADR) reporting is a major component of drug safety monitoring; its input will however only be optimized if systems can manage to deal with its tremendous flow of information, based primarily on unstructured text fields. The aim of this study was to develop an automated system allowing to code ADRs from patient reports. Our system was based on a knowledge base about drugs, enriched by supervised Machine Learning (ML) models trained on patients reporting data. To train our models, we selected all cases of ADRs reported by patients to a French Pharmacovigilance Centre through a national web-portal between March 2017 - March 2019 (n =2,058 reports). We tested both conventional ML models and deep-learning models. We performed an external validation using a dataset constituted of a random sample of ADRs reported to the Marseille Pharmacovigilance Centre over the same period (n=187). Here we show that regarding AUC and F-measure, the best model to identify ADRs was gradient boosting trees (LGBM), with an AUC of 0.93 [0.92-0.94] and F-measure of 0.72 [0.68 - 0.75]. This model was run for external validation showing an AUC of 0.91 and a F-measure of 0.58. We evaluated an artificial intelligence pipeline that was found able to learn how to identify correctly ADRs from unstructured data. This result allowed us to start a new study using more data to further improve our performance and offer a tool that is useful in practice to efficiently manage drug safety information.
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.title.enArtificial intelligence for unstructured healthcare data: application to coding of patient reporting of adverse drug reactions
dc.typeArticle de revueen_US
dc.identifier.doi10.1002/cpt.2266en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed33866552en_US
bordeaux.journalClinical Pharmacology and Therapeuticsen_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamPharmacoEpi-Drugsen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03273575
hal.version1
hal.date.transferred2021-06-29T10:15:24Z
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Clinical%20Pharmacology%20and%20Therapeutics&rft.date=2021-04-18&rft.eissn=1532-6535%20(Electronic)%200009-9236%20(Linking)&rft.issn=1532-6535%20(Electronic)%200009-9236%20(Linking)&rft.au=LETINIER,%20Louis&JOUGANOUS,%20Julien&BENKEBIL,%20Mehdi&BEL-LETOILE,%20Alicia&GOEHRS,%20Clement&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée