Dealing with death when studying disease or physiological marker: the stochastic system approach to causality
dc.rights.license | open | en_US |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | COMMENGES, Daniel | |
dc.date.accessioned | 2020-06-15T13:00:11Z | |
dc.date.available | 2020-06-15T13:00:11Z | |
dc.date.issued | 2019-07 | |
dc.identifier.issn | 1572-9249 (Electronic) 1380-7870 (Linking) | en_US |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/7923 | |
dc.description.abstractEn | The stochastic system approach to causality is applied to situations where the risk of death is not negligible. This approach grounds causality on physical laws, distinguishes system and observation and represents the system by multivariate stochastic processes. The particular role of death is highlighted, and it is shown that local influences must be defined on the random horizon of time of death. We particularly study the problem of estimating the effect of a factor V on a process of interest Y, taking death into account. We unify the cases where Y is a counting process (describing an event) and the case where Y is quantitative; we examine the case of observations in continuous and discrete time and we study the issue of whether the mechanism leading to incomplete data can be ignored. Finally, we give an example of a situation where we are interested in estimating the effect of a factor (blood pressure) on cognitive ability in elderly. | |
dc.language.iso | EN | en_US |
dc.subject.en | Biostatistics | |
dc.subject.en | SISTM | |
dc.title.en | Dealing with death when studying disease or physiological marker: the stochastic system approach to causality | |
dc.title.alternative | Lifetime Data Anal | en_US |
dc.type | Article de revue | en_US |
dc.identifier.doi | 10.1007/s10985-018-9454-3 | en_US |
dc.subject.hal | Sciences du Vivant [q-bio]/Santé publique et épidémiologie | en_US |
dc.identifier.pubmed | 30448970 | en_US |
bordeaux.journal | Lifetime Data Analysis | en_US |
bordeaux.page | 381-405 | en_US |
bordeaux.volume | 25 | en_US |
bordeaux.hal.laboratories | Bordeaux Population Health Research Center (BPH) - UMR 1219 | en_US |
bordeaux.issue | 3 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.team | SISTM_BPH | |
bordeaux.peerReviewed | oui | en_US |
bordeaux.inpress | non | en_US |
hal.identifier | hal-03209411 | |
hal.version | 1 | |
hal.date.transferred | 2021-04-27T09:00:37Z | |
hal.export | true | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Lifetime%20Data%20Analysis&rft.date=2019-07&rft.volume=25&rft.issue=3&rft.spage=381-405&rft.epage=381-405&rft.eissn=1572-9249%20(Electronic)%201380-7870%20(Linking)&rft.issn=1572-9249%20(Electronic)%201380-7870%20(Linking)&rft.au=COMMENGES,%20Daniel&rft.genre=article |