Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorSALLE, Isabelle
hal.structure.identifierGroupe de Recherche en Economie Théorique et Appliquée [GREThA]
dc.contributor.authorYILDIZOGLU, Murat
IDREF: 074218018
dc.date.accessioned2020-02-16T20:24:42Z
dc.date.available2020-02-16T20:24:42Z
dc.date.issued2014
dc.identifier.issn9277099en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/44
dc.description.abstractEnExtensive exploration of simulation models comes at a high computational cost, all the more when the model involves a lot of parameters. Economists usually rely on random explorations, such as Monte Carlo simulations, and basic econometric modeling to approximate the properties of computational models. This paper aims to provide guidelines for the use of a much more efficient method that combines a parsimonious sampling of the parameter space using a specific design of experiments (DoE), with a well-suited metamodeling method first developed in geostatistics: kriging. We illustrate these guidelines by following them in the analysis of two simple and well known economic models: Nelson and Winter’s industrial dynamics model, and Cournot oligopoly with learning firms. In each case, we show that our DoE experiments can catch the main effects of the parameters on the models’ dynamics with a much lower number of simulations than the Monte-Carlo sampling (e.g. 85 simulations instead of 2,000 in the first case). In the analysis of the second model, we also introduce supplementary numerical tools that may be combined with this method, for characterizing configurations complying with a specific criterion (social optimal, replication of stylized facts, etc.). Our appendix gives an example of the R-project code that can be used to apply this method on other models, in order to encourage other researchers to quickly test this approach on their models. © Springer Science+Business Media New York 2013.
dc.language.isoENen_US
dc.subject.enComputational economics
dc.subject.enDesign of experiments
dc.subject.enExploration of agent-based models
dc.subject.enMeta-modeling
dc.titleEfficient sampling and meta-modeling for computational economic models
dc.title.alternativeComput. Econ.en_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1007/s10614-013-9406-7en_US
dc.subject.halEconomie et finance quantitative [q-fin]en_US
dc.subject.halÉconomie et finance quantitative [q-fin]
bordeaux.journalComputational Economicsen_US
bordeaux.page507-536en_US
bordeaux.volume44en_US
bordeaux.hal.laboratoriesGroupe de Recherche en Economie Théorique et Appliquée (GREThA) - UMR 5113en_US
bordeaux.issue4en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03113248
hal.version1
hal.date.transferred2021-01-18T10:23:42Z
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Efficient%20sampling%20and%20meta-modeling%20for%20computational%20economic%20models&rft.atitle=Efficient%20sampling%20and%20meta-modeling%20for%20computational%20economic%20models&rft.jtitle=Computational%20Economics&rft.date=2014&rft.volume=44&rft.issue=4&rft.spage=507-536&rft.epage=507-536&rft.eissn=9277099&rft.issn=9277099&rft.au=SALLE,%20Isabelle&YILDIZOGLU,%20Murat&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée