Mostrar el registro sencillo del ítem
Efficient sampling and meta-modeling for computational economic models
dc.rights.license | open | en_US |
dc.contributor.author | SALLE, Isabelle | |
hal.structure.identifier | Groupe de Recherche en Economie Théorique et Appliquée [GREThA] | |
dc.contributor.author | YILDIZOGLU, Murat
IDREF: 074218018 | |
dc.date.accessioned | 2020-02-16T20:24:42Z | |
dc.date.available | 2020-02-16T20:24:42Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 9277099 | en_US |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/44 | |
dc.description.abstractEn | Extensive exploration of simulation models comes at a high computational cost, all the more when the model involves a lot of parameters. Economists usually rely on random explorations, such as Monte Carlo simulations, and basic econometric modeling to approximate the properties of computational models. This paper aims to provide guidelines for the use of a much more efficient method that combines a parsimonious sampling of the parameter space using a specific design of experiments (DoE), with a well-suited metamodeling method first developed in geostatistics: kriging. We illustrate these guidelines by following them in the analysis of two simple and well known economic models: Nelson and Winter’s industrial dynamics model, and Cournot oligopoly with learning firms. In each case, we show that our DoE experiments can catch the main effects of the parameters on the models’ dynamics with a much lower number of simulations than the Monte-Carlo sampling (e.g. 85 simulations instead of 2,000 in the first case). In the analysis of the second model, we also introduce supplementary numerical tools that may be combined with this method, for characterizing configurations complying with a specific criterion (social optimal, replication of stylized facts, etc.). Our appendix gives an example of the R-project code that can be used to apply this method on other models, in order to encourage other researchers to quickly test this approach on their models. © Springer Science+Business Media New York 2013. | |
dc.language.iso | EN | en_US |
dc.subject.en | Computational economics | |
dc.subject.en | Design of experiments | |
dc.subject.en | Exploration of agent-based models | |
dc.subject.en | Meta-modeling | |
dc.title | Efficient sampling and meta-modeling for computational economic models | |
dc.title.alternative | Comput. Econ. | en_US |
dc.type | Article de revue | en_US |
dc.identifier.doi | 10.1007/s10614-013-9406-7 | en_US |
dc.subject.hal | Economie et finance quantitative [q-fin] | en_US |
dc.subject.hal | Économie et finance quantitative [q-fin] | |
bordeaux.journal | Computational Economics | en_US |
bordeaux.page | 507-536 | en_US |
bordeaux.volume | 44 | en_US |
bordeaux.hal.laboratories | Groupe de Recherche en Economie Théorique et Appliquée (GREThA) - UMR 5113 | en_US |
bordeaux.issue | 4 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.peerReviewed | oui | en_US |
bordeaux.inpress | non | en_US |
hal.identifier | hal-03113248 | |
hal.version | 1 | |
hal.date.transferred | 2021-01-18T10:23:42Z | |
hal.export | true | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Efficient%20sampling%20and%20meta-modeling%20for%20computational%20economic%20models&rft.atitle=Efficient%20sampling%20and%20meta-modeling%20for%20computational%20economic%20models&rft.jtitle=Computational%20Economics&rft.date=2014&rft.volume=44&rft.issue=4&rft.spage=507-536&rft.epage=507-536&rft.eissn=9277099&rft.issn=9277099&rft.au=SALLE,%20Isabelle&YILDIZOGLU,%20Murat&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |