Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierGroupe de Recherche en Economie Théorique et Appliquée [GREThA]
dc.contributor.authorBRANDOUY, Olivier
IDREF: 034884718
dc.contributor.authorDELAHAYE, Jean-Paul
dc.contributor.authorMA, Lin
dc.date.accessioned2020-02-20T10:22:59Z
dc.date.available2020-02-20T10:22:59Z
dc.date.issued2015
dc.identifier.issn2158-5571en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/3625
dc.description.abstractEnRandomness and regularities in finance are usually treated in probabilistic terms. In this paper, we develop a different approach in using a non-probabilistic framework based on the algorithmic information theory initially developed by Kolmogorov (1965). We develop a generic method to estimate the Kolmogorov complexity of numeric series. This approach is based on an iterative "regularity erasing procedure" (REP) implemented to use lossless compression algorithms on financial data. The REP is found to be necessary to detect hidden structures, as one should "wash out" well-established financial patterns (i.e. stylized facts) to prevent algorithmic tools from concentrating on these non-profitable patterns. The main contribution of this article is methodological: we show that some structural regularities, invisible with classical statistical tests, can be detected by this algorithmic method. Our final illustration on the daily Dow-Jones Index reveals a weak compression rate, once well- known regularities are removed from the raw data. This result could be associated to a high efficiency level of the New York Stock Exchange, although more effective algorithmic tools could improve this compression rate on detecting new structures in the future.
dc.language.isoENen_US
dc.subject.enKolmogorov complexity
dc.subject.encompression
dc.subject.enefficiency
dc.subject.enreturn
dc.title.enEstimating the algorithmic complexity of stock markets
dc.typeArticle de revueen_US
dc.identifier.doi10.3233/AF-150052
dc.subject.halEconomie et finance quantitative [q-fin]en_US
dc.subject.halÉconomie et finance quantitative [q-fin]
bordeaux.journalAlgorithmic Financeen_US
bordeaux.page159-178en_US
bordeaux.volume4en_US
bordeaux.hal.laboratoriesGroupe de Recherche en Economie Théorique et Appliquée (GREThA) - UMR 5113en_US
bordeaux.issue3-4en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-01745717
hal.version1
hal.date.transferred2021-01-20T10:50:59Z
hal.exportfalse
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Algorithmic%20Finance&rft.date=2015&rft.volume=4&rft.issue=3-4&rft.spage=159-178&rft.epage=159-178&rft.eissn=2158-5571&rft.issn=2158-5571&rft.au=BRANDOUY,%20Olivier&DELAHAYE,%20Jean-Paul&MA,%20Lin&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée